OLD CS 473: Fundamental Algorithms, Spring 2015

Dynamic Programming

Lecture 09
February 17, 2015

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Part I

Longest Increasing Subsequence

Sequences

Example

(1) Sequence: $6,3,5,2,7,8,1,9$
(2) Subsequence of above sequence: 5,2,1
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(- Decreasing sequence: $34,21,7,5,1$
(- Increasing subsequence of the first sequence: $\mathbf{2 , 7 , 9}$.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: $6,7,8$ and $3,5,7,8$ and 2,7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$
(1) Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . .(\boldsymbol{n}-\mathbf{1})])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])$ is not so clear.

Observation

if $\boldsymbol{A}[\boldsymbol{n}]$ is in the longest increasing subsequence then all the elements before it must be smaller.

Naïve Enumeration

Assume $a_{1}, a_{2}, \ldots, a_{n}$ is contained in an array \boldsymbol{A}

```
algLISNaive ( \(\boldsymbol{A}[1 . . n]\) ) :
    max \(=0\)
    for each subsequence \(B\) of \(A\) do
        if \(B\) is increasing and \(|B|>\max\) then
                \(\max =|B|\)
    Output max
```

Running time: $O\left(\boldsymbol{n} \mathbf{2}^{\boldsymbol{n}}\right)$.
$2^{\boldsymbol{n}}$ subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.

Recursive Approach: Take 1

```
algLIS(A[1..n]):
    if ( }n=0\mathrm{ ) then return 0
    m= algLIS(A[1..(n-1)])
    B is subsequence of A[1..(n-1)] with
        only elements less than A[n]
    (* let h be size of B, h<n-1 *)
    m=max(m,1 + algLIS(B[1..h]))
    Output m
```

Recursion for running time: $\boldsymbol{T}(n) \leq \mathbf{2 T}(n-\mathbf{1})+O(n)$. Easy to see that $T(n)$ is $O\left(n 2^{n}\right)$.

Recursive Approach: Take 2

$\operatorname{LIS}(\boldsymbol{A}[1 . . n]):$

(1) Case 1: Does not contain $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(A[1 . . n])=\operatorname{LIS}(A[1 . .(n-1)])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])$ is not so clear.

Observation

(1) Case 2: find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $\mathbf{A}[n]$
(2) Generalization LIS_smaller(A[1..n],x): longest increasing subsequence in \boldsymbol{A}, all numbers in sequence is $\leq \boldsymbol{x}$

Recursive Algorithm: Take 3

Definition

LISEnding(A[1..n]): length of longest increasing sub-sequence that ends in $\boldsymbol{A}[\boldsymbol{n}]$.

Question: can we obtain a recursive expression?

$$
\operatorname{LISEnding}(A[1 . . n])=\max _{i: A[i]<A[n]}([)] 1+\operatorname{LISEnding}(A[1 . . i])
$$

Observation

Previous recursion also generates only $O\left(n^{2}\right)$ subproblems. Slightly harder to see.

Recursive Algorithm: Take 3

```
LIS_ending_alg \((A[1 . . n])\) :
    if \((n=0)\) return 0
    \(m=1\)
    for \(i=1\) to \(n-1\) do
        if \((A[i]<A[n])\) then
            \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
    return \(m\)
```

 \(\operatorname{LIS}(A[1 . . n]):\)
 return \(\max _{i=1}^{n}\) LIS_ending_alg \((A[1 \ldots i])\)

Question:

How many distinct subproblems generated by LIS_ending_alg($A[1 . . n])$? n.

Iterative Algorithm via Memoization

Simplifying:

```
\(\operatorname{LIS}(A[1 . . n]):\)
    Array L[1..n] (* Li] stores the value LISEnding(A[1..i]) *)
    \(\boldsymbol{m}=0\)
    for \(\boldsymbol{i}=\mathbf{1}\) to \(\boldsymbol{n}\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
            if \((A[j]<A[i])\) do
                \(L[i]=\max (L[i], 1+L[j])\)
        \(\boldsymbol{m}=\boldsymbol{\operatorname { m a x }}(\boldsymbol{m}, L[i])\)
    return \(m\)
```

Correctness: Via induction following the recursion
Running time: $\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}}\right)$, Space: $\boldsymbol{\Theta}(\boldsymbol{n})$

Iterative Algorithm via Memoization

Compute the values LIS_ending_alg($\boldsymbol{A}[\mathbf{1} . . \boldsymbol{i}])$ iteratively in a bottom up fashion.

```
LIS_ending_alg (A[1..n]):
    Array \(L[1 . . n]\) (* \(L[i]=\) value of LIS_ending_alg \((A[1 . . i]) *)\)
    for \(\boldsymbol{i}=1\) to \(\boldsymbol{n}\) do
        \(L[i]=1\)
        for \(j=1\) to \(i-1\) do
            if \((A[j]<A[i])\) do
            \(L[i]=\max (L[i], 1+L[j])\)
    return L
```

$\operatorname{LIS}(A[1 . . n]):$
$L=$ LIS_ending_alg(A[1..n])
return the maximum value
$\operatorname{LIS}(A[1 . . n]):$
$L=$ LIS_ending_alg(A[1..n])
return the maximum value
return the maximum value in L

Example

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Longest increasing subsequence: $3,5,7,8$
(1) $L[i]$ is value of longest increasing subsequence ending in $A[i]$
(2) Recursive algorithm computes $L[i]$ from $L[1]$ to $L[i-1]$
(3) Iterative algorithm builds up the values from $L[1]$ to $L[n]$

Memoizing
```\(\operatorname{LIS}(A[1 . . n]):\) \(\boldsymbol{A}[\boldsymbol{n}+1]=\infty\) (* add a sentinel at the end \(*\) ) Array \(L[(n+1),(n+1)]\) (* two-dimensional array*) (* \(L[i, j]\) for \(j \geq i\) stores the value LIS_smaller \((A[1 . . i], A[j])\) for \(j=1\) to \(n+1\) do \(L[0, j]=0\) for \(i=1\) to \(n+1\) do for \(j=i\) to \(n+1\) do \(L[i, j]=L[i-1, j]\) if \((A[i]<A[j])\) then \(L[i, j]=\max (L[i, j], 1+L[i-1, i])\) return \(L[n,(n+1)]\)```

Correctness: Via induction following the recursion (take 2)
Running time: $O\left(n^{2}\right)$, Space: $\boldsymbol{\Theta}\left(n^{2}\right)$

## Longest increasing subsequence

(1) $G=(\{s, 1, \ldots, n\},\{ \})$ : directed graph

- $\forall \boldsymbol{i}, \boldsymbol{j}$ : If $\boldsymbol{i}<\boldsymbol{j}$ and $\boldsymbol{A}[\boldsymbol{i}]<\boldsymbol{A}[\boldsymbol{j}]$ then add the edge $\boldsymbol{i} \rightarrow \boldsymbol{j}$ to $\boldsymbol{G}$.
(2) $\forall i$ : Add $s \rightarrow i$.
(2) The graph $G$ is a DAG. LIS corresponds to longest path in $G$ starting at $s$
(3) We know how to compute this in $O(|V(G)|+|E(G)|)=O\left(n^{2}\right)$.
(9) Comment: One can compute LIS in $O(n \log n)$ time with a bit more work.


## Longest increasing subsequence

Another way to get quadratic time algorithm

Input sequence: 6, 3, 5, 2, 7, 8, 1, 9 .

Longest increasing subsequence: $\mathbf{3 , 5 , 7 , 8} \mathbf{9}$.

## Dynamic Programming

(1) Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
(2) Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
(3) Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.
(0) Optimize the resulting algorithm further

## Part II

## Weighted Interval Scheduling

## Greedy Strategies

(1) Earliest finish time first
(2) Largest weight/profit first
( Largest weight to length ratio first

- Shortest length first
- ...

None of the above strategies lead to an optimum solution.
Moral: Greedy strategies often don't work!

## Reduction to...

Max Weight Independent Set Problem
(1) Given weighted interval scheduling instance I create an instance of max weight independent set on a graph $G(I)$ as follows.
(1) For each interval $\boldsymbol{i}$ create a vertex $\boldsymbol{v}_{\boldsymbol{i}}$ with weight $\boldsymbol{w}_{\boldsymbol{i}}$.
(2) Add an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if $\boldsymbol{i}$ and $\boldsymbol{j}$ overlap.
(2) Claim: max weight independent set in $G(I)$ has weight equal to max weight set of intervals in $I$ that do not overlap

## Reduction to...

Max Weight Independent Set Problem
(1) There is a reduction from Weighted Interval Scheduling to Independent Set.
(2) Can use structure of original problem for efficient algorithm?
(3) Independent Set in general is NP-Complete.

## Towards a Recursive Solution

## Observation

## Consider an optimal schedule $\mathcal{O}$

Case $\boldsymbol{n} \in \mathcal{O}$ : None of the jobs between $\boldsymbol{n}$ and $\boldsymbol{p}(\boldsymbol{n})$ can be scheduled. Moreover $\mathcal{O}$ must contain an optimal schedule for the first $p(n)$ jobs.
Case $\boldsymbol{n} \notin \mathcal{O}: \mathcal{O}$ is an optimal schedule for the first $\boldsymbol{n}-\mathbf{1}$ jobs.

## Example



## A Recursive Algorithm

Let $\boldsymbol{O}_{\boldsymbol{i}}$ be value of an optimal schedule for the first $\boldsymbol{i}$ jobs.

$$
\begin{aligned}
& \text { Schedule }(n): \\
& \text { if } n=0 \text { then return } 0 \\
& \text { if } n=1 \text { then return } w\left(v_{1}\right) \\
& O_{p(n)} \leftarrow \operatorname{Schedule}(p(n)) \\
& O_{n-1} \leftarrow \operatorname{Schedule}(n-1) \\
& \text { if }\left(O_{p(n)}+w\left(v_{n}\right)<O_{n-1}\right) \text { then } \\
& \quad O_{n}=O_{n-1} \\
& \text { else } O_{n}=O_{p(n)}+w\left(v_{n}\right) \\
& \text { return } O_{n}
\end{aligned}
$$

## Time Analysis

Running time is $T(n)=T(p(n))+T(n-1)+O(1)$ which is $\ldots$

## Analysis of the Problem



Figure: Label of node indicates size of sub-problem. Tree of sub-problems grows very quickly

## Bad Example



Figure: Bad instance for recursive algorithm

Running time on this instance is

$$
T(n)=T(n-1)+T(n-2)+O(1)=\Theta\left(\phi^{n}\right)
$$

where $\phi \approx 1.618$ is the golden ratio.

## Memo(r)ization

## Observation

(1) Number of different sub-problems in recursive algorithm is $O(n)$; they are $O_{1}, O_{2}, \ldots, O_{n-1}$
(2) Exponential time is due to recomputation of solutions to sub-problems

## Solution

Store optimal solution to different sub-problems, and perform recursive call only if not already computed.

## Recursive Solution with Memoization

```
schdIMem(j)
 if j=0 then return 0
 if M[j] is defined then (* sub-problem already solved *)
 return M[j]
 if M[j] is not defined then
 M[j] = max (w(vj) + \operatorname{schdIMem(p(j)), schdIMem(j-1))}
 return M[j]
```


## Time Analysis

- Each invocation, $\boldsymbol{O ( 1 )}$ time plus: either return a computed value, or generate 2 recursive calls and fill one $M[\cdot]$
- Initially no entry of $M[]$ is filled; at the end all entries of $M[]$ are filled
- So total time is $\boldsymbol{O ( n )}$ (Assuming input is presorted...)


## Example



M: table of subproblems
(1) Implicitly dynamic programming fills the values of $M$.
(2) Recursion determines order in which table is filled up.
( Think of decomposing problem first (recursion) and then worry about setting up table - this comes naturally from recursion.

## Automatic Memoization

## Fact

Many functional languages (like LISP) automatically do memoization for recursive function calls!

## Back to Weighted Interval Scheduling

## Iterative Solution

```
M[0] = 0
for i=1 to n do
 M[i] = max (w(vi) +M[p(i)],M[i-1])
```


## Computing Solutions + First Attempt

(1) Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

$$
\begin{aligned}
& M[0]=0 \\
& S[0] \text { is empty schedule } \\
& \text { for } i=1 \text { to } n \text { do } \\
& M[i]=\max \left(w\left(v_{i}\right)+M[p(i)], M[i-1]\right) \\
& \text { if } w\left(v_{i}\right)+M[p(i)]<M[i-1] \text { then } \\
& S[i]=S[i-1] \\
& \text { else } \quad S[i]=S[p(i)] \cup\{i\}
\end{aligned}
$$

(2) Naïvely updating $S[]$ takes $O(n)$ time
(3) Total running time is $O\left(n^{2}\right)$
(a) Using pointers and linked lists running time can be improved to $O(n)$.

## Computing Implicit Solutions

$M[0]=0$
for $\boldsymbol{i}=1$ to $\boldsymbol{n}$ do
$M[i]=\max \left(v_{i}+M[p(i)], M[i-1]\right)$
if $\left(v_{i}+M[p(i)]>M[i-1]\right)$ then
Decision $[\mathrm{i}]=1$ (* 1: $\boldsymbol{i}$ included in solution $M[i] *)$
else
Decision[i] $=0$ (* 0: $\boldsymbol{i}$ not included in solution $M[i] *)$
$s=\emptyset, i=n$
while ( $i>0$ ) do
if (Decision $[i]=1$ ) then

$$
\begin{aligned}
& S=S \cup\{i\} \\
& i=p(i)
\end{aligned}
$$

else

$$
i=i-1
$$

return $S$

