
OLD CS 473: Fundamental Algorithms, Spring

2015

Reductions, Recursion and
Divide and Conquer
Lecture 6
February 5, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 43



Part I

Reductions and Recursion

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 43



Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 43



Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 43



Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot him with
the blue elephant gun.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 43



Reduction

Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot him with
the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 43



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 43



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 43



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 43



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates
in A?

Naive algorithm:

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i ] = A[j ])
return YES

return NO

Running time: O(n2)

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 43



Reduction to Sorting

1 Code:
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

2 Running time: O(n) plus time to sort an array of n numbers

3 Key point: algorithm uses sorting as a black box.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 43



Reduction to Sorting

1 Code:
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

2 Running time: O(n) plus time to sort an array of n numbers

3 Key point: algorithm uses sorting as a black box.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 43



Reduction to Sorting

1 Code:
Sort A
for i = 1 to n − 1 do

if (A[i ] = A[i + 1]) then
return YES

return NO

2 Running time: O(n) plus time to sort an array of n numbers

3 Key point: algorithm uses sorting as a black box.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Two sides of Reductions

1 Suppose problem A reduces to problem B
1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

2 Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an O(n log n)

time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 43



Recursion

1 Reduction: reduce one problem to another.
2 Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself
2 self-reduction

3 Recursion as a reduction:
1 Problem instance of size n is reduced to one or more instances

of size n − 1 or less.
2 For termination, problem instances of small size are solved by

some other method as base cases

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 43



Recursion

1 Reduction: reduce one problem to another.
2 Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself
2 self-reduction

3 Recursion as a reduction:
1 Problem instance of size n is reduced to one or more instances

of size n − 1 or less.
2 For termination, problem instances of small size are solved by

some other method as base cases

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 43



Recursion

1 Reduction: reduce one problem to another.
2 Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself
2 self-reduction

3 Recursion as a reduction:
1 Problem instance of size n is reduced to one or more instances

of size n − 1 or less.
2 For termination, problem instances of small size are solved by

some other method as base cases

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 43



Recursion

1 Reduction: reduce one problem to another.
2 Recursion: a special case of reduction

1 reduce problem to a smaller instance of itself
2 self-reduction

3 Recursion as a reduction:
1 Problem instance of size n is reduced to one or more instances

of size n − 1 or less.
2 For termination, problem instances of small size are solved by

some other method as base cases

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Recursion

1 Recursion is a powerful and fundamental technique.
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)

4 Recurrences arise in analysis

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Selection Sort

1 Sort a given array A[1..n] of integers.
2 Recursive version of Selection sort.

3 Code:

SelectSort(A[1..n]):
if n = 1 return
Find smallest number in A.

Let A[i ] be smallest number

Swap A[1] and A[i ]
SelectSort(A[2..n])

4 T (n): time for SelectSort on an n element array.

5 T (n) = T (n − 1) + n for n > 1 and T (1) = 1 for n = 1

6 T (n) = Θ(n2).

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 43



Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

1 Move stack of n disks from peg 0 to peg 2, one disk at a time.
2 Rule: cannot put a larger disk on a smaller disk.
3 Question: what is a strategy and how many moves does it take?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 43



Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

1 Move stack of n disks from peg 0 to peg 2, one disk at a time.
2 Rule: cannot put a larger disk on a smaller disk.
3 Question: what is a strategy and how many moves does it take?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 43



Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

1 Move stack of n disks from peg 0 to peg 2, one disk at a time.
2 Rule: cannot put a larger disk on a smaller disk.
3 Question: what is a strategy and how many moves does it take?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 43



Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

1 Move stack of n disks from peg 0 to peg 2, one disk at a time.
2 Rule: cannot put a larger disk on a smaller disk.
3 Question: what is a strategy and how many moves does it take?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 43



Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 43



Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 43



Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 43



Recursive Algorithm

Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)

Move disk n from src to dest

Hanoi(n − 1, tmp, dest, src)

T (n): time to move n disks via recursive strategy

T (n) = 2T (n − 1) + 1 n > 1 and T (1) = 1

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Analysis

T (n) = 2T (n − 1) + 1

= 22T (n − 2) + 2 + 1

= . . .

= 2iT (n − i) + 2i−1 + 2i−2 + . . . + 1

= . . .

= 2n−1T (1) + 2n−2 + . . . + 1

= 2n−1 + 2n−2 + . . . + 1

= (2n − 1)/(2 − 1) = 2n − 1

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 43



Non-Recursive Algorithms for Tower of Hanoi

1 Pegs numbered 0, 1, 2
2 Non-recursive Algorithm 1:

1 Always move smallest disk forward if n is even, backward if n is
odd.

2 Never move the same disk twice in a row.
3 Done when no legal move.

3 Moves are exactly same as those of recursive algorithm. Prove
by induction.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 43



Non-Recursive Algorithms for Tower of Hanoi

1 Pegs numbered 0, 1, 2
2 Non-recursive Algorithm 1:

1 Always move smallest disk forward if n is even, backward if n is
odd.

2 Never move the same disk twice in a row.
3 Done when no legal move.

3 Moves are exactly same as those of recursive algorithm. Prove
by induction.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 43



Non-Recursive Algorithms for Tower of Hanoi

1 Pegs numbered 0, 1, 2
2 Non-recursive Algorithm 1:

1 Always move smallest disk forward if n is even, backward if n is
odd.

2 Never move the same disk twice in a row.
3 Done when no legal move.

3 Moves are exactly same as those of recursive algorithm. Prove
by induction.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 43



Part II

Divide and Conquer

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Divide and Conquer Paradigm

1 Divide and Conquer is a common and useful type of recursion

Approach

(A) Break problem instance into smaller instances - divide step
(B) Recursively solve problem on smaller instances.
(C) Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

2 Question: Why is this not plain recursion?

1 In divide and conquer, each smaller instance is typically at least
a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 43



Sorting

Input Given an array of n elements

Goal Rearrange them in ascending order

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 43



Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 43



Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = ⌊n/2⌋

A L G O R I T H M S

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 43



Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = ⌊n/2⌋

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 43



Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = ⌊n/2⌋

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 43



Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = ⌊n/2⌋

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

3 Merge two arrays using only constantly more extra space is
doable (in-place merge sort).

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Merging Sorted Arrays

1 Use a new array C to store the merged array

2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

3 Merge two arrays using only constantly more extra space is
doable (in-place merge sort).

4 inplace merge: More complicated... Available in STL.

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Running Time

1 T (n): time for merge sort to sort an n element array

2 T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn.
3 What do we want as a solution to the recurrence?
4 Almost always only an asymptotically tight bound. That is we

want to know f (n) such that T (n) = Θ(f (n)).
1 T (n) = O(f (n)) - upper bound.
2 T (n) = Ω(f (n)) - lower bound

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Solving Recurrences: Some Techniques

1 Some techniques:
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus.
2 Expand the recurrence and spot a pattern and use simple math.
3 Recursion tree method — imagine the computation as a tree.
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds

2 Albert Einstein: “Everything should be made as simple as
possible, but not simpler.”

3 Know where to be loose in analysis and where to be tight.
Comes with practice, practice, practice!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 43



Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 43



Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 43



Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 43



Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.
3 Sum over all levels. The number of levels is log n. So total is

cn log n = O(n log n).

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 43



Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T (n) = 2T (n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the i th level total work is cn.
3 Sum over all levels. The number of levels is log n. So total is

cn log n = O(n log n).

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 43



Recursion Trees
An illustrated example...

n

n/2 n/2

n/4 n/4 n/4 n/4

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 43



Recursion Trees
An illustrated example...

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 43



Recursion Trees
An illustrated example...

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 43



Recursion Trees
An illustrated example...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n



= cn

= cn

= cn

= cn
...

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 43



Recursion Trees
An illustrated example...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n



= cn

= cn

= cn

= cn
...

+

+

= cn log n = O(n log n)

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 43



MergeSort Analysis
When n is not a power of 2

1 When n is not a power of 2, the running time of MergeSort is
expressed as

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 43



MergeSort Analysis
When n is not a power of 2

1 When n is not a power of 2, the running time of MergeSort is
expressed as

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

2 n1 = 2k−1 < n ≤ 2k = n2 (n1, n2 powers of 2).

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 43



MergeSort Analysis
When n is not a power of 2

1 When n is not a power of 2, the running time of MergeSort is
expressed as

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

2 n1 = 2k−1 < n ≤ 2k = n2 (n1, n2 powers of 2).

3 T (n1) < T (n) ≤ T (n2) (Why?).

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 43



MergeSort Analysis
When n is not a power of 2

1 When n is not a power of 2, the running time of MergeSort is
expressed as

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

2 n1 = 2k−1 < n ≤ 2k = n2 (n1, n2 powers of 2).

3 T (n1) < T (n) ≤ T (n2) (Why?).

4 T (n) = Θ(n log n) since n/2 ≤ n1 < n ≤ n2 ≤ 2n.

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 43



Recursion Trees

MergeSort: n is not a power of 2

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

Observation: For any number x , ⌊x/2⌋ + ⌈x/2⌉ = x .

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



MergeSort Analysis
When n is not a power of 2: Guess and Verify

1 If n is power of 2 we saw that T (n) = Θ(n log n).
2 Can guess that T (n) = Θ(n log n) for all n.
3 Verify?

4 proof by induction!

5 Induction Hypothesis: T (n) ≤ 2cn log n for all n ≥ 1

6 Base Case: n = 1. T (1) = 0 since no need to do any work
and 2cn log n = 0 for n = 1.

7 Induction Step Assume T (k) ≤ 2ck log k for all k < n and
prove it for k = n.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 43



Induction Step

We have

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
≤ 2c⌊n/2⌋ log⌊n/2⌋ + 2c⌈n/2⌉ log⌈n/2⌉ + cn (by induction)

≤ 2c⌊n/2⌋ log⌈n/2⌉ + 2c⌈n/2⌉ log⌈n/2⌉ + cn
≤ 2c(⌊n/2⌋ + ⌈n/2⌉) log⌈n/2⌉ + cn
≤ 2cn log⌈n/2⌉ + cn
≤ 2cn log(2n/3) + cn (since ⌈n/2⌉ ≤ 2n/3 for all n ≥ 2)

≤ 2cn log n + cn(1 − 2 log 3/2)

≤ 2cn log n + cn(log 2 − log 9/4)

≤ 2cn log n

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 43



Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cn log n?

1 Do not know upfront what constant to choose.

2 Instead assume that T (n) ≤ αcn log n for some constant α.
α will be fixed later.

3 Need to prove that for α large enough the algebra succeeds.

4 In our case... need α such that α log 3/2 > 1.

5 Typically, do the algebra with α and then show that it works...
... if α is chosen to be sufficiently large constant.

How do we know which function to guess?
We don’t so we try several “reasonable” functions. With practice and
experience we get better at guessing the right function.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 43



Guess and Verify

The math worked out like magic!
Why was 2cn log n chosen instead of say 4cn log n?

1 Do not know upfront what constant to choose.

2 Instead assume that T (n) ≤ αcn log n for some constant α.
α will be fixed later.

3 Need to prove that for α large enough the algebra succeeds.

4 In our case... need α such that α log 3/2 > 1.

5 Typically, do the algebra with α and then show that it works...
... if α is chosen to be sufficiently large constant.

How do we know which function to guess?
We don’t so we try several “reasonable” functions. With practice and
experience we get better at guessing the right function.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 43



Guess and Verify
What happens if the guess is wrong?

1 Guessed that the solution to the MergeSort recurrence is
T (n) = O(n).

2 Try to prove by induction that T (n) ≤ αcn for some const’ α.

3 Induction Step: attempt

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
≤ αc⌊n/2⌋ + αc⌈n/2⌉ + cn
≤ αcn + cn
≤ (α + 1)cn

But need to show that T (n) ≤ αcn!
4 So guess does not work for any constant α. Suggests that our

guess is incorrect.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 43



Guess and Verify
What happens if the guess is wrong?

1 Guessed that the solution to the MergeSort recurrence is
T (n) = O(n).

2 Try to prove by induction that T (n) ≤ αcn for some const’ α.

3 Induction Step: attempt

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
≤ αc⌊n/2⌋ + αc⌈n/2⌉ + cn
≤ αcn + cn
≤ (α + 1)cn

But need to show that T (n) ≤ αcn!
4 So guess does not work for any constant α. Suggests that our

guess is incorrect.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 43



Guess and Verify
What happens if the guess is wrong?

1 Guessed that the solution to the MergeSort recurrence is
T (n) = O(n).

2 Try to prove by induction that T (n) ≤ αcn for some const’ α.

3 Induction Step: attempt

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
≤ αc⌊n/2⌋ + αc⌈n/2⌉ + cn
≤ αcn + cn
≤ (α + 1)cn

But need to show that T (n) ≤ αcn!
4 So guess does not work for any constant α. Suggests that our

guess is incorrect.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 43



Guess and Verify
What happens if the guess is wrong?

1 Guessed that the solution to the MergeSort recurrence is
T (n) = O(n).

2 Try to prove by induction that T (n) ≤ αcn for some const’ α.

3 Induction Step: attempt

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn
≤ αc⌊n/2⌋ + αc⌈n/2⌉ + cn
≤ αcn + cn
≤ (α + 1)cn

But need to show that T (n) ≤ αcn!
4 So guess does not work for any constant α. Suggests that our

guess is incorrect.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 43



Selection Sort vs Merge Sort

1 Selection Sort spends O(n) work to reduce problem from n to
n − 1 leading to O(n2) running time.

2 Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(n log n)

3 Question: Merge Sort splits into 2 (roughly) equal sized arrays.
Can we do better by splitting into more than 2 arrays? Say k
arrays of size n/k each?

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 43



Selection Sort vs Merge Sort

1 Selection Sort spends O(n) work to reduce problem from n to
n − 1 leading to O(n2) running time.

2 Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(n log n)

3 Question: Merge Sort splits into 2 (roughly) equal sized arrays.
Can we do better by splitting into more than 2 arrays? Say k
arrays of size n/k each?

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 43



Selection Sort vs Merge Sort

1 Selection Sort spends O(n) work to reduce problem from n to
n − 1 leading to O(n2) running time.

2 Merge Sort spends O(n) time after reducing problem to two
instances of size n/2 each. Running time is O(n log n)

3 Question: Merge Sort splits into 2 (roughly) equal sized arrays.
Can we do better by splitting into more than 2 arrays? Say k
arrays of size n/k each?

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 43



Quick Sort

1 QuickSort [Hoare]:
1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.
3 Linear scan of array it. Time is O(n).
4 Recursively sort the subarrays, and concatenate them.

2 Example:
1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16
3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
4 put them together with pivot in middle

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 43



Quick Sort

1 QuickSort [Hoare]:
1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.
3 Linear scan of array it. Time is O(n).
4 Recursively sort the subarrays, and concatenate them.

2 Example:
1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16
3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
4 put them together with pivot in middle

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 43



Quick Sort

1 QuickSort [Hoare]:
1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.
3 Linear scan of array it. Time is O(n).
4 Recursively sort the subarrays, and concatenate them.

2 Example:
1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16
3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
4 put them together with pivot in middle

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 43



Quick Sort

1 QuickSort [Hoare]:
1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself.
3 Linear scan of array it. Time is O(n).
4 Recursively sort the subarrays, and concatenate them.

2 Example:
1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16
3 split into 12, 14, 5, 3, 1 and 20, 19, 18 and recursively sort
4 put them together with pivot in middle

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 43



Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 43



Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = ⌈n/2⌉ then T (n) =
T (⌈n/2⌉ − 1) + T (⌊n/2⌋) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 43



Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = ⌈n/2⌉ then T (n) =
T (⌈n/2⌉ − 1) + T (⌊n/2⌋) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 43



Time Analysis

1 Let k be the rank of the chosen pivot. Then,
T (n) = T (k − 1) + T (n − k) + O(n)

2 If k = ⌈n/2⌉ then T (n) =
T (⌈n/2⌉ − 1) + T (⌊n/2⌋) + O(n) ≤ 2T (n/2) + O(n).
Then, T (n) = O(n log n).

1 Theoretically, median can be found in linear time.

3 Typically, pivot is the first or last element of array. Then,

T (n) = max
1≤k≤n

(T (k − 1) + T (n − k) + O(n))

In the worst case T (n) = T (n − 1) + O(n), which means
T (n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 43



Part III

Fast Multiplication

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 43



Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 43



Time Analysis of Grade School Multiplication

1 Each partial product: Θ(n)
2 Number of partial products: Θ(n)
3 Addition of partial products: Θ(n2)

4 Total time: Θ(n2)

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 43



A Trick of Gauss

1 Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

2 Observation: Multiply two complex numbers: (a + bi) and
(c + di):

(a + bi)(c + di) = ac − bd + (ad + bc)i
3 How many multiplications do we need?

4 Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 43



A Trick of Gauss

1 Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

2 Observation: Multiply two complex numbers: (a + bi) and
(c + di):

(a + bi)(c + di) = ac − bd + (ad + bc)i
3 How many multiplications do we need?

4 Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 43



A Trick of Gauss

1 Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

2 Observation: Multiply two complex numbers: (a + bi) and
(c + di):

(a + bi)(c + di) = ac − bd + (ad + bc)i
3 How many multiplications do we need?

4 Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 43



A Trick of Gauss

1 Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

2 Observation: Multiply two complex numbers: (a + bi) and
(c + di):

(a + bi)(c + di) = ac − bd + (ad + bc)i
3 How many multiplications do we need?

4 Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 43



A Trick of Gauss

1 Carl Friedrich Gauss: 1777–1855 “Prince of Mathematicians”

2 Observation: Multiply two complex numbers: (a + bi) and
(c + di):

(a + bi)(c + di) = ac − bd + (ad + bc)i
3 How many multiplications do we need?

4 Only 3! If we do extra additions and subtractions.
Compute ac, bd , (a + b)(c + d). Then
(ad + bc) = (a + b)(c + d) − ac − bd

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 43



Divide and Conquer

Assume n is a power of 2 for simplicity and numbers are in decimal.

1 x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0

2 x = 10n/2xL + xR where xL = xn−1 . . . xn/2 and
xR = xn/2−1 . . . x0

3 y = 10n/2yL + yR where yL = yn−1 . . . yn/2 and
yR = yn/2−1 . . . y0

Therefore

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 43



Example

1234 × 5678 = (100 × 12 + 34) × (100 × 56 + 78)

= 10000 × 12 × 56

+100 × (12 × 78 + 34 × 56)

+34 × 78

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 43



Time Analysis

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 43



Time Analysis

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 43



Time Analysis

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 43



Time Analysis

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

4 recursive multiplications of number of size n/2 each plus 4
additions and left shifts (adding enough 0’s to the right)

T (n) = 4T (n/2) + O(n) T (1) = O(1)

T (n) = Θ(n2). No better than grade school multiplication!

Can we invoke Gauss’s trick here?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 43



Improving the Running Time

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR) − xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 43



Improving the Running Time

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR) − xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 43



Improving the Running Time

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR) − xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 43



Improving the Running Time

xy = (10n/2xL + xR)(10
n/2yL + yR)

= 10nxLyL + 10n/2(xLyR + xRyL) + xRyR

Gauss trick: xLyR + xRyL = (xL + xR)(yL + yR) − xLyL − xRyR

Recursively compute only xLyL, xRyR, (xL + xR)(yL + yR).

Time Analysis
Running time is given by

T (n) = 3T (n/2) + O(n) T (1) = O(1)

which means T (n) = O(nlog2 3) = O(n1.585)

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 43



State of the Art

Schönhage-Strassen 1971: O(n log n log log n) time using
Fast-Fourier-Transform (FFT)

Martin Fürer 2007: O(n log n2O(log∗ n)) time

Conjecture

There is an O(n log n) time algorithm.

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 43



Analyzing the Recurrences

1 Basic divide and conquer: T (n) = 4T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(n2).

2 Saving a multiplication: T (n) = 3T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(n1+log 1.5)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.
2 Work at depth i is 4in/2i and 3in/2i respectively: number of

children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2
i and n

∑L
i=0(3/2)

i

respectively.

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 43



Analyzing the Recurrences

1 Basic divide and conquer: T (n) = 4T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(n2).

2 Saving a multiplication: T (n) = 3T (n/2) + O(n),
T (1) = 1. Claim: T (n) = Θ(n1+log 1.5)

Use recursion tree method:

1 In both cases, depth of recursion L = log n.
2 Work at depth i is 4in/2i and 3in/2i respectively: number of

children at depth i times the work at each child

3 Total work is therefore n
∑L

i=0 2
i and n

∑L
i=0(3/2)

i

respectively.

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 43



Recursion tree analysis

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 43



Notes

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 43



Notes

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 43



Notes

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 43



Notes

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 43


	Reductions and Recursion
	Recursion

	Divide and Conquer
	Merge Sort
	Merge Sort
	Analysis
	Solving Recurrences

	Quick Sort

	Fast Multiplication
	The Problem
	Algorithmic Solution
	Grade School Multiplication
	Divide and Conquer Solution
	Karatsuba's Algorithm



