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Part I

Shortest Paths with Negative Length
Edges
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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems
Input: A directed graph
G = (V ,E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
ℓ(e) = ℓ(u, v) is its length.

1 Given nodes s, t find
shortest path from s to t.

2 Given node s find shortest
path from s to all other
nodes.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths
of C is negative.
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Shortest Paths and Negative Cycles

1 Given G = (V ,E) with edge lengths and s, t. Suppose
1 G has a negative length cycle C , and
2 s can reach C and C can reach t.

2 Question: What is the shortest distance from s to t?
3 Possible answers: Define shortest distance to be:

1 undefined, that is −∞, OR
2 the length of a shortest simple path from s to t.
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Shortest Paths and Negative Cycles

Lemma
If there is an efficient algorithm to find a shortest simple s → t path
in a graph with negative edge lengths, then there is an efficient
algorithm to find the longest simple s → t path in a graph with
positive edge lengths.

Finding the s → t longest path is difficult. NP-Hard!
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E) with arbitrary (including
negative) edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its
length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths
In Undirected Graphs

Note: With negative lengths, shortest path problems and negative
cycle detection in undirected graphs cannot be reduced to directed
graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs.
Beyond the scope of this class. If interested, ask instructor for
references.
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Why Negative Lengths?

Several Applications

1 Shortest path problems useful in modeling many situations — in
some negative lengths are natural

2 Negative length cycle can be used to find arbitrage opportunities
in currency trading

3 Important sub-routine in algorithms for more general problem:
minimum-cost flow
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Negative cycles
Application to Currency Trading

Currency Trading

Input: n currencies and for each ordered pair (a, b) the exchange
rate for converting one unit of a into one unit of b.
Questions:

1 Is there an arbitrage opportunity?

2 Given currencies s, t what is the best way to convert s to t
(perhaps via other intermediate currencies)?
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Negative cycles
Application to Currency Trading

Concrete example:
1 1 Chinese Yuan = 0.1116 Euro

2 1 Euro = 1.3617 US dollar

3 1 US Dollar = 7.1 Chinese Yuan.

As such...
Thus, if exchanging 1 $→ Yuan→ Euro→ $, we get:
0.1116 ∗ 1.3617 ∗ 7.1 = 1.07896$.
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Reducing Currency Trading to Shortest Paths

1 Observation: If we convert currency i to j via intermediate
currencies k1, k2, . . . , kh then one unit of i yields
exch(i , k1)× exch(k1, k2) . . .× exch(kh, j) units of j .

2 Create currency trading directed graph G = (V ,E):
1 For each currency i there is a node vi ∈ V
2 E = V × V : an edge for each pair of currencies
3 edge length ℓ(vi , vj ) = − log(exch(i , j)) can be negative

3 Exercise: Verify that
1 There is an arbitrage opportunity if and only if G has a negative

length cycle.
2 The best way to convert currency i to currency j is via a

shortest path in G from i to j . If d is the distance from i to j
then one unit of i can be converted into 2d units of j .
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Reducing Currency Trading to Shortest Paths
Math recall - relevant information

1 log(α1 ∗ α2 ∗ · · · ∗ αk) = logα1 + logα2 + · · ·+ logαk .

2 log x > 0 if and only if x > 1 .
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Shortest Paths with Negative Edge Lengths
Problems

Algorithmic Problems

Input: A directed graph G = (V ,E) with arbitrary (including
negative) edge lengths. For edge e = (u, v), ℓ(e) = ℓ(u, v) is its
length.

Questions:

1 Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

2 Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

3 Check if G has a negative length cycle or not.
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Dijkstra’s Algorithm and Negative Lengths

With negative cost edges, Dijkstra’s algorithm fails
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False assumption: Dijkstra’s algorithm is based on the assumption
that if s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk
then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k . Holds true only for
non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk
then for 1 ≤ i < k :

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to
vi

2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k . Holds true
only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need a
more basic strategy.
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A Generic Shortest Path Algorithm

1 Start with distance estimate for each node d(s, u) set to∞
2 Maintain the invariant that there is an s → u path of length

d(s, u). Hence d(s, u) ≥ dist(s, u).
3 Iteratively refine d(s, ·) values until they reach the correct value

dist(s, ·) values at termination

Must hold that...
d(s, v) ≤ d(s, u) + ℓ(u, v)

vs

d(s, u)

u
`(s, u)
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A Generic Shortest Path Algorithm

Question: How do we make progress?

Definition
Given distance estimates d(s, u) for each u ∈ V , an edge
e = (u, v) is tense if d(s, v) > d(s, u) + ℓ(u, v).

Relax(e = (u, v))
if (d(s, v) > d(s, u) + ℓ(u, v)) then

d(s, v)⇐ d(s, u) + ℓ(u, v)
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A Generic Shortest Path Algorithm

Invariant
If a vertex u has value d(s, u) associated with it, then there is a
s ⇝ u walk of length d(s, u).

Proposition

Relax maintains the invariant on d(s, u) values.

Proof.
Indeed, if Relax((u, v)) changed the value of d(s, v), then there is
a walk to u of length d(s, u) (by invariant), and there is a walk of
length d(s, u) + ℓ(u, v) to v through u, which is the new value of
d(s, v).
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A Generic Shortest Path Algorithm

d(s, s) = 0
for each node u ̸= s do

d(s, u) =∞

while there is a tense edge do
Pick a tense edge e
Relax(e)

Output d(s, u) values

Technical assumption: If e = (u, v) is an edge and
d(s, u) = d(s, v) =∞ then edge is not tense.
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Properties of the generic algorithm

Proposition

If u is not reachable from s then d(s, u) remains at∞ throughout
the algorithm.
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Properties of the generic algorithm

Proposition
If a negative length cycle C is reachable by s then there is always a
tense edge and hence the algorithm never terminates.

Proof
Let C = v0, v1, . . . , vk be a negative length cycle. Suppose
algorithm terminates. Since no edge of C was tense, for
i = 1, 2, . . . , k we have d(s, vi) ≤ d(s, vi−1) + ℓ(vi−1, vi) and
d(s, v0) ≤ d(s, vk) + ℓ(vk , v0). Adding up all the inequalities we
obtain that length of C is non-negative!
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Proof in more detail...

d(s, v1) ≤ d(s, v0) + ℓ(v0, v1)

d(s, v2) ≤ d(s, v1) + ℓ(v1, v2)

. . .

d(s, vi) ≤ d(s, vi−1) + ℓ(vi−1, vi)

. . .

d(s, vk) ≤ d(s, vk−1) + ℓ(vk−1, vk)

d(s, v0) ≤ d(s, vk) + ℓ(vk , vk)

k∑
i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)
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i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1
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i=1

ℓ(vi−1, vi) + ℓ(vk , v0).
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Proof in more detail...

k∑
i=0

d(s, vi) ≤
k∑

i=0

d(s, vi) +
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0)

0 ≤
k∑

i=1

ℓ(vi−1, vi) + ℓ(vk , v0) = len(C).

C is a not a negative cycle. Contradiction.
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Properties of the generic algorithm

Corollary
If the algorithm terminates then there is no negative length cycle C
that is reachable from s.
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Properties of the generic algorithm

Lemma
If the algorithm terminates then d(s, u) = dist(s, u) for each node
u (and s cannot reach a negative cycle).

Proof of lemma; see future slides.
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Properties of the generic algorithm
If estimate distance from source too large, then ∃ tense edge...

Lemma
If ∃ walk π ≡ s = v1 → v2 → · · · → vk = u such that

ℓ(π) =
∑k−1

i=1 ℓ(vi , vj) < d(s, u)
Then, there exists a tense edge in G .

Proof.
Assume π: shortest in number of edges (with property).
=⇒ ℓ(v1 → · · · vk−1) ≥ d(s, vk−1).
=⇒ d(s, vk−1) + ℓ(vk−1, vk)

≤ ℓ(v1 → · · · vk−1) + ℓ(vk−1, vk)
= ℓ(π) < d(s, vk).

=⇒ d(s, vk−1) + ℓ(vk−1, vk) < d(s, vk)
=⇒ edge (vk−1, vk) is tense.

=⇒ If for any vertex u: d(s, u) > dist(s, u) then the algorithm
will continue working!
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Then, there exists a tense edge in G .

Proof.
Assume π: shortest in number of edges (with property).

· · ·
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Generic Algorithm: Ordering Relax operations

d(s,s) = 0

for each node u ̸= s do

d(s,u) = ∞

While there is a tense edge do

Pick a tense edge e
Relax(e)

Output d(s, u) values for u ∈ V (G)

Question: How do we pick edges to relax?

Observation: Suppose s → v1 → . . .→ vk is a shortest path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in
order then d(s, vk) = dist(s, vk)!
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Ordering Relax operations

1 Observation: Suppose s → v1 → . . .→ vk is a shortest
path.

If Relax(s, v1), Relax(v1, v2), . . ., Relax(vk−1, vk) are done in
order then d(s, vk) = dist(s, vk)! (Why?)

2 We don’t know the shortest paths so how do we know the order
to do the Relax operations?
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Ordering Relax operations

1 We don’t know the shortest paths so how do we know the order
to do the Relax operations?

2 We don’t!

1 Relax all edges (even those not tense) in some arbitrary order
2 Iterate |V | − 1 times
3 First iteration will do Relax(s, v1) (and other edges), second

round Relax(v1, v2) and in iteration k we do Relax(vk−1, vk).
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The Bellman-Ford (BellmanFord) Algorithm

BellmanFord:
for each u ∈ V do

d(s, u)←∞
d(s, s)← 0

for i = 1 to |V | − 1 do
for each edge e = (u, v) do

Relax(e)

for each u ∈ V do
dist(s, u)← d(s, u)

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 52



BellmanFord Algorithm: Scanning Edges

One possible way to scan edges in each iteration.

Q is an empty queue

for each u ∈ V do
d(s, u) =∞
enq(Q, u)

d(s, s) = 0

for i = 1 to |V | − 1 do
for j = 1 to |V | do

u = deq(Q)

for each edge e in Adj(u) do
Relax(e)

enq(Q, u)

for each u ∈ V do
dist(s, u) = d(s, u)
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Example

Step 0

s

a c

b

d f

e
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We are done! No edge is tense.
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Figure: One iteration of BellmanFord that Relaxes all edges by
processing nodes in the order s, a, b, c, d , e, f . Red edges indicate the
prev pointers (in reverse)
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Figure: 6 iterations of BellmanFord starting with the first one from
previous slide. No changes in 5th iteration and 6th iteration.
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Correctness of the BellmanFord Algorithm
Lemma
G : a directed graph with arbitrary edge lengths, v : a node in V s.t.
there is a shortest path from s to v with i edges. Then, after i
iterations of the loop in BellmanFord, d(s, v) = dist(s, v)

Proof.
By induction on i .

1 Base case: i = 0. d(s, s) = 0 and d(s, s) = dist(s, s).
2 Induction Step: Let s → v1 . . .→ vi−1 → v be a shortest

path from s to v of i hops.
1 vi−1 has a shortest path from s of i − 1 hops or less. (Why?).

By induction, d(s, vi−1) = dist(s, vi−1) after i − 1 iterations.
2 In iteration i , Relax(vi−1, vi ) sets d(s, vi ) = dist(s, vi ).
3 Note: Relax does not change d(s, u) once

d(s, u) = dist(s, u).
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Correctness of BellmanFord Algorithm

Corollary

After |V | − 1 iterations of BellmanFord, d(s, u) = dist(s, u) for
any node u that has a shortest path from s.

Note: If there is a negative cycle C such that s can reach C then we
do not know whether d(s, u) = dist(s, u) or not even if dist(s, u)
is well-defined.

Question: How do we know whether there is a negative cycle C
reachable from s?
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BellmanFord to detect Negative Cycles

for each u ∈ V do
d(s, u) =∞

d(s, s) = 0

for i = 1 to |V | − 1 do
for each edge e = (u, v) do

Relax(e)

for each edge e = (u, v) do
if e = (u, v) is tense then

Stop and output that s can reach

a negative length cycle

Output for each u ∈ V : d(s, u)
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Correctness

Lemma
G has a negative cycle reachable from s if and only if there is a tense
edge e after |V | − 1 iterations of BellmanFord.

Proof Sketch.
G has no negative length cycle reachable from s implies that all
nodes u have a shortest path from s. Therefore
d(s, u) = dist(s, u) after the |V | − 1 iterations. Therefore, there
cannot be any tense edges left.

If there is a negative cycle C then there is a tense edge after |V | − 1
(in fact any number of) iterations. See lemma about properties of
the generic shortest path algorithm.
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Part II

Negative cycle detection
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Finding the Paths and a Shortest Path Tree

BellmanFord:
for each u ∈ V do

d(s, u) =∞
prev(u) = null

d(s, s) = 0
for i = 1 to |V | − 1 do

for each edge e = (u, v) do
Relax(e)

if there is a tense edge e then
Output that s can reach a negative cycle C

else
for each u ∈ V do

output d(s, u)

Relax(e = (u, v)):
if (d(s, v) > d(s, u) + ℓ(u, v)) then

d(s, v) = d(s, u) + ℓ(u, v)
prev(v) = u

Note: prev pointers induce a shortest path tree.Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 52



Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

1 BellmanFord checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

2 Run BellmanFord |V | times, once from each node u?
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Negative Cycle Detection

1 Add a new node s ′ and connect it to all nodes of G with zero
length edges.

2 BellmanFord from s ′ will fill find a negative length cycle if
there is one.

3 Exercise: why does this work?
4 Negative cycle detection can be done with one BellmanFord

invocation.
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Running time for BellmanFord

1 Input graph G = (V ,E) with m = |E | and n = |V |.
2 n outer iterations and m Relax() operations in each iteration.

Each Relax() operation is O(1) time.

3 Total running time: O(mn).
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Dijkstra’s Algorithm with Relax()

for each node u ̸= s do
d(s, u) =∞

d(s, s) = 0
S = ∅
while (S ̸= V ) do

Let v be node in V − S with min d value

S = S ∪ {v}
for each edge e in Adj(v) do

Relax(e)
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Part III

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
ℓ(e) = ℓ(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

1 No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative length edges

2 Can order nodes using topological sort
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Algorithm for DAGs

1 Want to find shortest paths from s. Ignore nodes not reachable
from s.

2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

1 shortest path from s to vi cannot use any node from
vi+1, . . . , vn

2 can find shortest paths in topological sort order.
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Algorithm for DAGs

1 Code:

ShortestPathDAG:
for i = 1 to n do

d(s, vi ) =∞
d(s, s) = 0

for i = 1 to n − 1 do
for each edge e in Adj(vi ) do

Relax(e)

return d(s, ·) values computed

2 Correctness: induction on i and observation in previous slide.

3 Running time: O(m + n) time algorithm! Works for negative
edge lengths and hence can find longest paths in a DAG.
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Takeaway Points

1 Shortest paths with potentially negative length edges arise in a
variety of applications.

2 Longest simple path problem is difficult (no known efficient
algorithm and NP-Hard).

3 Restrict attention to shortest walks. Well defined only if there
are no negative length cycles reachable from the source.

4 In this case shortest walk = shortest path.

5 Generic shortest path algorithm starts with distance estimates to
the source. Iteratively relaxes the edges one by one.

6 ...Guaranteed to terminate with correct distances if no negative
length cycle reachable from s.

7 If negative length cycle reachable from s =⇒ no termination.

8 Dijkstra’s algorithm also instantiation of generic algorithm.
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Points continued

1 BellmanFord is instantiation of generic algorithm.
2 ...in each iteration relaxes all the edges.
3 Discovers negative length cycles if there is tense edge in the nth

iteration.
4 For vertex u with a shortest path to the source with i edges the

algorithm has the correct distance after i iterations.
5 Running time of BellmanFord algorithm is O(nm).
6 BellmanFord can be adapted to find a negative length cycle in

the graph by adding a new vertex.
7 If we have a DAG then it has no negative length cycle and

hence shortest paths exists even with negative lengths.
8 Can compute single-source shortest paths in DAG in linear time.
9 Implies one can compute longest paths in a DAG in linear time.
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Questions for a possible written quiz...

(A) Given a directed graph G = (V, E) with n vertices and m
edges, describe how to compute a cycle in G if such a cycle
exist. What is the running time of your algorithm?

(B) As above, but assume edges have weights (negative or positive).
Describe how to detect a negative cycle in G?

(C) Describe how to modify your algorithm from (B) so that it
outputs the negative cycle.
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Part IV

Not for lecture
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A shortest walk that visits all vertices...
... in a graph might have to be of length Ω(n2)

s

t
X
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Notes
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