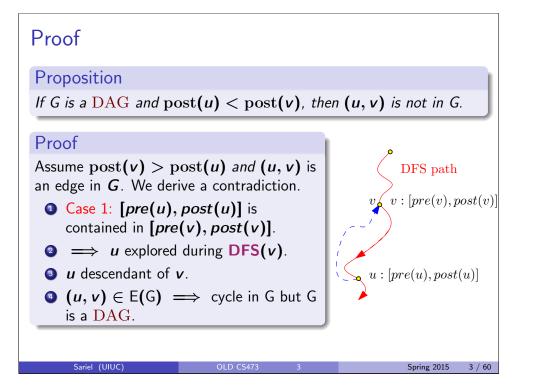
OLD CS 473: Fundamental Algorithms, Spring 2015

More on DFS in Directed Graphs, and Strong Connected Components, and DAGs

Lecture 3 January 27, 2015				
Sariel (UIUC)	OLD CS473	1	Spring 2015	1 / 60



Using DFS...

. to check for Acylicity and compute Topological Ordering

Question

Given G, is it a $\ensuremath{\mathbf{DAG}}\xspace$ If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in DFS(G).

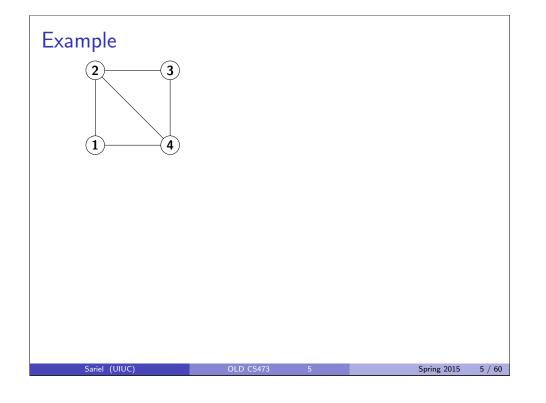
Proposition

Sariel (UIUC)

If G is a DAG and post(v) > post(u), then $(u \rightarrow v)$ is not in G.

Spring 2015

Proof continued Proposition If G is a DAG and post(u) < post(v), then (u, v) is not in G. Proof continued... Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. (a) By assumption: post(u) < post(v). (b) By assumption: post(u) < post(v). (c) post(v) < pre(v)(c) post(v) < pre(v)(c) pre(v), post(v) < pre(u), post(u). (c) pre(v), post(v) < pre(u), post(u). (c) post(v) < pre(u), post(u). (c) post(v) < pre(u), post(u). (c) post(v) < pre(u), post(u).

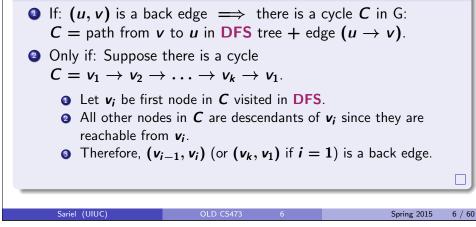


Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.



Topological sorting of a DAG Input: DAG G. With *n* vertices and *m* edges. O(n + m) algorithms for topological sorting (A) Put source *s* of G as first in the order, remove *s*, and repeat. (Implementation not trivial.) (B) Do DFS of G. Compute post numbers. Sort vertices by decreasing post number. Question How to avoid sorting? No need to sort - post numbering algorithm can output vertices...

DAGs and Partial Orders

Definition

Sariel (UIUC)

A partially ordered set is a set ${\it S}$ along with a binary relation \preceq such that \preceq is

- reflexive $(a \preceq a \text{ for all } a \in V)$,
- **2** anti-symmetric $(a \leq b \text{ and } a \neq b \text{ implies } b \leq a)$, and
- **3** transitive $(a \leq b \text{ and } b \leq c \text{ implies } a \leq c)$.

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$. **Observation:** A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

What's DAG but a sweet old fashioned notion $\ensuremath{\mathsf{Who}}\xspace$ needs a $\ensuremath{\mathsf{DAG}}\xspace$...

Example V: set of n products (say, n different types of tablets). Want to buy one of them, so you do market research... Online reviews compare only pairs of them. ...Not everything compared to everything. Given this partial information: Decide what is the best product. Decide what is the ordering of products from best to worst. ...

Part I

Linear time algorithm for finding all strong connected components of a directed graph

What DAGs got to do with it?

Or why we should care about DAGs

- DAGs enable us to represent partial ordering information we have about some set (very common situation in the real world).
- Questions about DAGs:
 - Is a graph G a DAG?
 - \iff

Sariel (UIUC

Is the partial ordering information we have so far is consistent?

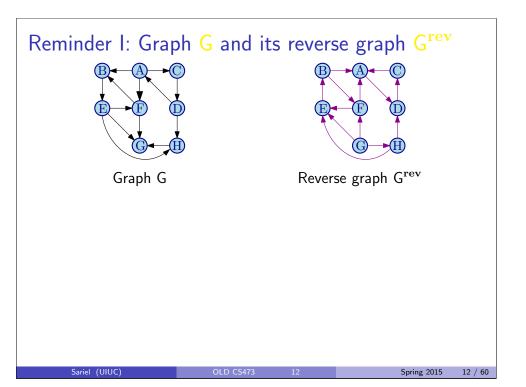
 $\ensuremath{\textcircled{O}}$ Compute a topological ordering of a DAG.

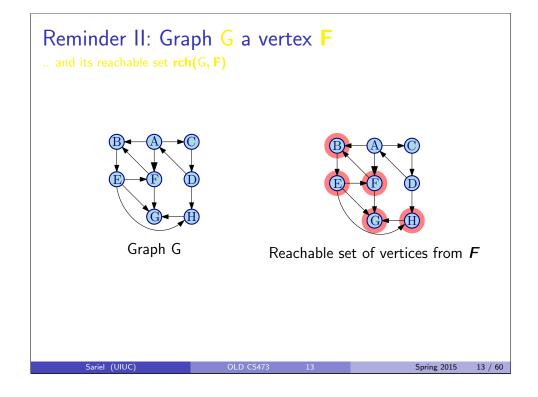
 \iff Find an a consistent ordering that agrees with our partial information.

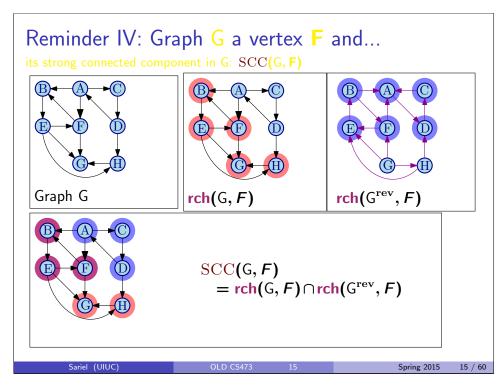
Which elements to compare so that we have a consistent ordering of the items.

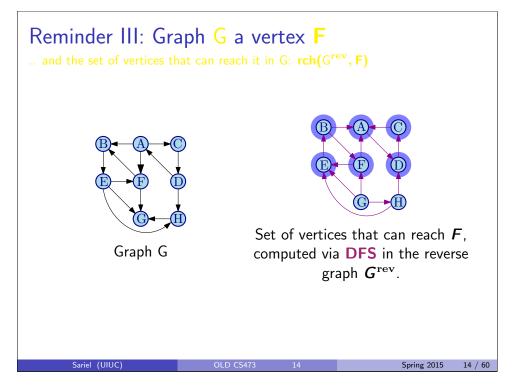
Spring 2015

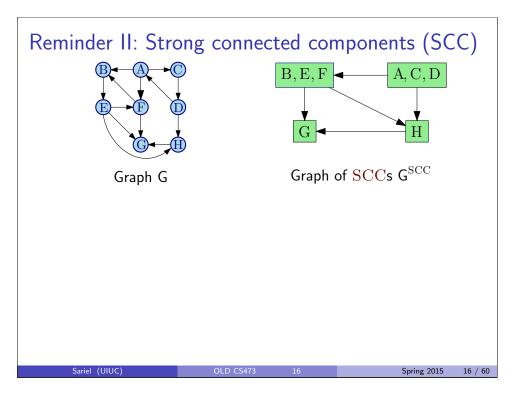
10 / 60







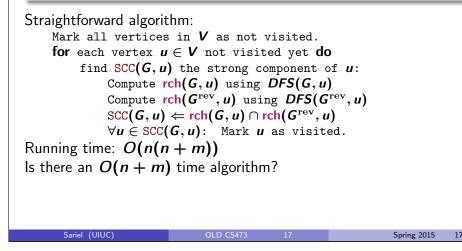




Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.



Linear-time Algorithm for SCCs: Ideas Exploit structure of meta-graph...

Wishful Thinking Algorithm

- **1** Let u be a vertex in a *sink* SCC of G^{SCC}
- **2** Do **DFS**(u) to compute SCC(u)
- **3** Remove SCC(u) and repeat

Justification

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!
- **OFS**(u) takes time proportional to size of SCC(u)

OLD CS473

• Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an $\ensuremath{\textit{implicit}}$ topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

Answer: **DFS**(G) gives some information!

Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some DFS(G).

Sariel (UIUC)	OLD CS473	21	Spring 20	15 21 / 60
Sariei (UIUC)	0ED C3473	21	Spring 20	15 21 / 00

Graph of strong connected components

... and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

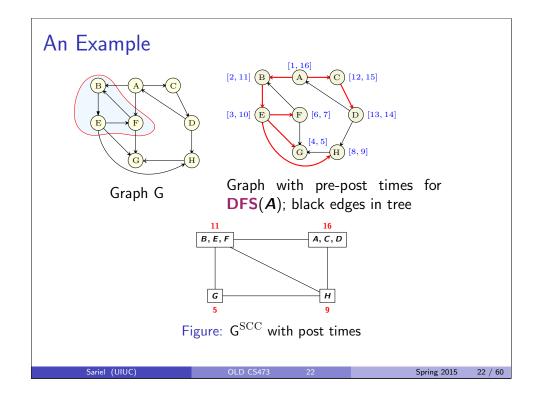
Proof.

Let u be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u) completes.
- **2** If $u \in S'$ then all of S' will be explored before any of S.

```
A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every u \in S and u' \in S', post(u) > post(u').
```

OLD CS47



Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

23 / 60

Spring 2015

DFS(G) gives some information on topological ordering of G^{SCC} !

OLD_CS473

Finding Sources

Sariel (UIUC

Proposition

The vertex u with the highest post visit time belongs to a source SCC in $G^{\rm SCC}$

Proof.

- post(SCC(u)) = post(u)
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of G^{SCC} .

Linear Time Algorithm
for computing the strong connected components in G
do $DFS(G^{\mathrm{rev}})$ and sort vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if <i>u</i> is not visited then
DFS(u)
Let S_u be the nodes reached by u
Output $m{S}_{m{u}}$ as a strong connected component
Remove $\boldsymbol{S_u}$ from G

Finding Sinks

Proposition

25 / 60

Spring 2015

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(G^{rev})$ belongs to a sink SCC of G.

Proof. *u* belongs to source SCC of *G*^{rev}

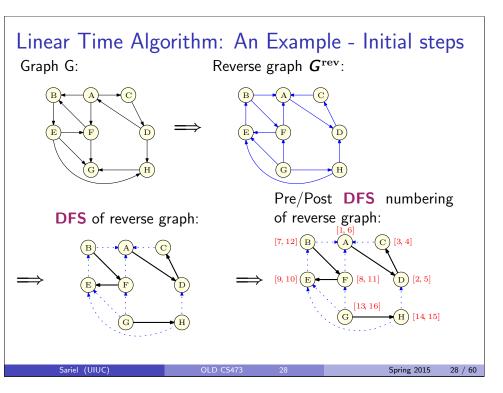
Sariel (UIUC

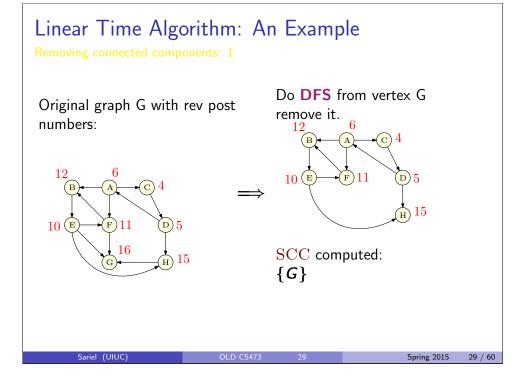
Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.

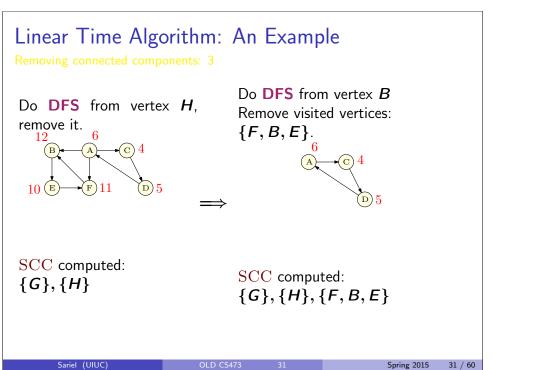
OLD CS47

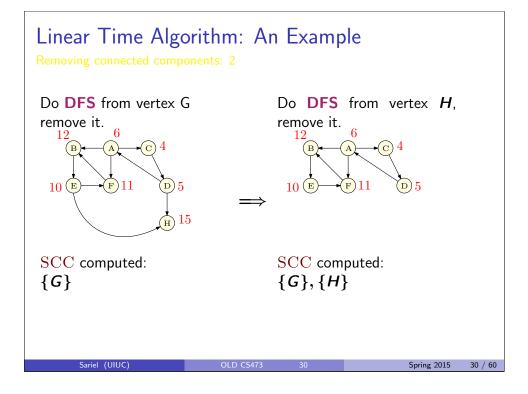
Spring 2015

26 / 60

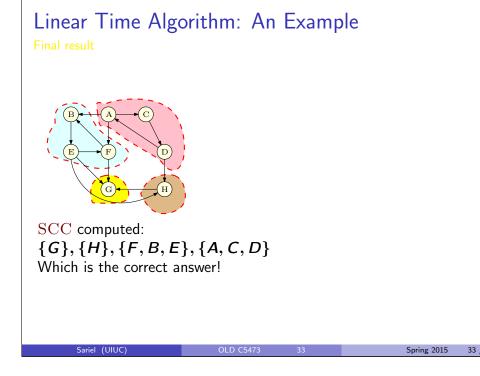








Linear Time Algorit Removing connected component	-
Do DFS from vertex F Remove visited vertices: $\{F, B, E\}$.	Do DFS from vertex A Remove visited vertices: { A , C , D }.
D 5 SCC computed: {G}, {H}, {F, B, E}	\Rightarrow SCC computed: $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$
Sarial (11111C)	01.D. CS473 32 Spring 2015 32 / 60



Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev} .
- consider $\mathsf{DFS}(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $\operatorname{post}(u_i) = \operatorname{post}(S_i) = \max_{v \in S_i} \operatorname{post}(v)$.
- Solution Assume without loss of generality that $post(u_k) > post(u_{k-1}) \ge \ldots \ge post(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
- u_k has highest post number and $DFS(u_k)$ will explore all of S_k which is a sink component in G.
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.

35 / 60

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Sariel (UIUC

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

Part II An Application to make

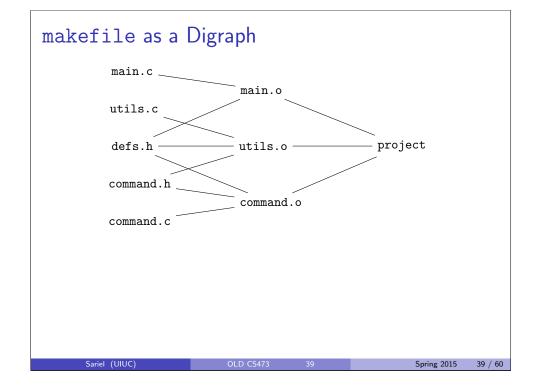
Sariel (UIUC)

OLD CS473

Spring 2015

make Utility [Feldman]

<list-item><list-item><list-item><list-item><list-item>
Otive utility for automatically building large software applications
A makefile specifies
Object files to be created,
Source/object files to be used in creation, and
How to create them



An Example makefile

	010 03413		Spring 2013	00 / 00
Sariel (UIUC)	OLD CS473	38	Spring 2015	38 / 60
cc -c command	d.c			
command.o: comma	and.c defs.h (command.h		
cc -c utils.	-			
		ana.n		
utils.o: utils.		and h		
cc -c main.c				
main.o: main.c (defs.h			
1 5				
cc -o projec	t main.o util:	s.o command	.0	
project: main.o	utils.o comma	and.o		

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

OLD CS

40 / 60

Algorithms for make

- O Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Part III

Not for lecture - why do we have to use the reverse graph in computing the SCC?

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Finding a sink via post numbers in a DAG

Lemma

Let G be a DAG, and consider the vertex u in G that minimizes post(u). Then u is a sink of G.

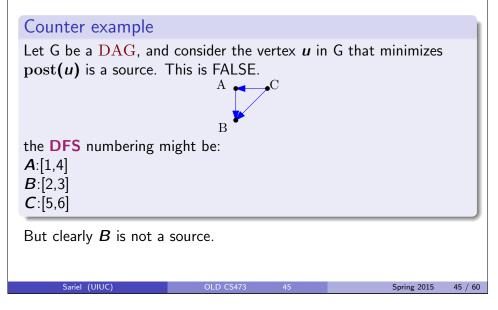
Proof.

The minimum $post(\cdot)$ is assigned the first time **DFS** returns for its recursion. Let $\pi = v_1, v_2, \ldots, v_k = u$ be the sequence of vertices visited by the **DFS** at this point. Clearly, u (i.e., v_k), can not have an edge going into v_1, \ldots, v_{k-1} since this would violates the assumption that there are no cycles. Similarly, u can not have an outgoing edge going into a vertex $z \in V(G) \setminus \{v_1, \ldots, v_k\}$, since the **DFS** would have continued into z, and u would not have been the first vertex to get assigned a post number. We conclude that u has no outgoing edges, and it is thus a sink.

OLD CS473

Spring 2015

Counterexample: Finding a source via min post numbers in a \ensuremath{DAG}



Meta graph computing the sink ...

We proved:

Lemma

Consider the graph G^{SCC} , with every $CC \ S \in V(G^{SCC})$ numbered by post(S). Then:

 $\forall (S \rightarrow T) \in E(G^{SCC}) \quad post(S) > post(T).$

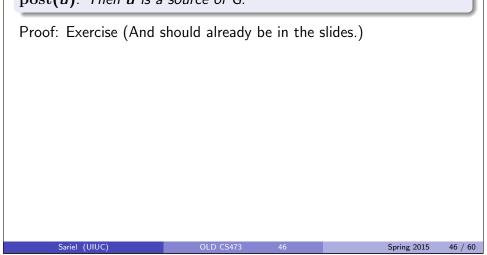
So, the SCC realizing min post(S) is indeed a sink of G^{SCC}.
But how to compute this? Not clear at all.

OLD CS473

Finding a source via post numbers in a DAG

Lemma

Let G be a DAG, and consider the vertex u in G that maximizes post(u). Then u is a source of G.



Meta graph computing a source is easy!

- The SCC realizing $\max post(S)$ is a source of G^{SCC} .
- Intermore, computing

 $\max_{S \in V(G^{SCC})} \operatorname{post}(S) = \max_{S \in V(G^{SCC})} \max_{\nu \in S} \operatorname{post}(\nu) = \max_{\nu \in V(G)} \operatorname{post}(\nu).$

is easy!

- So computing a source in the meta-graph is easy from the post numbering.
- But the algorithm needs a sink of the meta graph. Thus, we compute a vertex in the source SCC of the meta-graph of $(G^{rev})^{SCC} = (G^{SCC})^{rev}$.