OLD CS 473: Fundamental Algorithms, Spring 2015

DFS in Directed Graphs, Strong Connected Components, and DAGs

Lecture 2 January 22, 2015

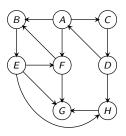
Strong Connected Components (SCCs)

Algorithmic Problem

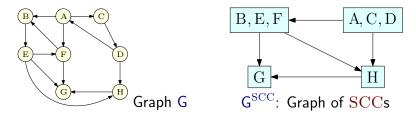
Find all SCCs of a given directed graph.

Previous lecture:

Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: O(n + m) time algorithm.



Graph of SCCs



Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- **()** Vertices are $S_1, S_2, \ldots S_k$
- ② There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

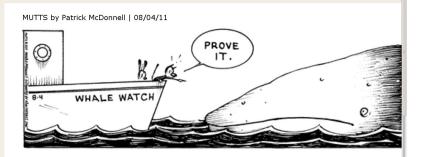
Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.



SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

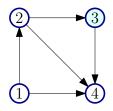
Part I

Directed Acyclic Graphs

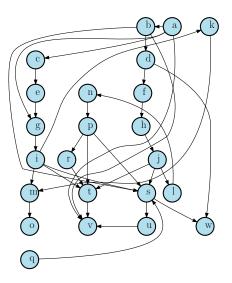
Directed Acyclic Graphs

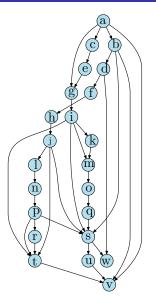
Definition

A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.

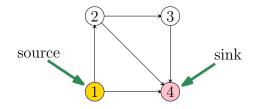


Is this a DAG?





Sources and Sinks



Definition

A vertex u is a source if it has no in-coming edges.

A vertex u is a sink if it has no out-going edges.

Simple DAG Properties

- **(Delta:** Every DAG G has at least one source and at least one sink.
- **2** If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

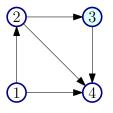
Formal proofs: exercise.

Simple DAG Properties

- **(Delta:** Every DAG G has at least one source and at least one sink.
- **2** If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting



Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

Sariel (UIUC)

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Proof.

 $\implies: \text{Suppose G is not a DAG and has a topological ordering } \prec. \text{ G}$ has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$! That is... $u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

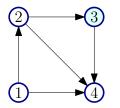
Lemma

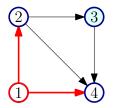
A directed graph G can be topologically ordered iff it is a DAG.

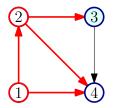
Continued.

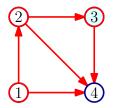
- \Leftarrow : Consider the following algorithm:
 - Pick a source u, output it.
 - Provide the second s
 - ③ Repeat until graph is empty.
 - ④ Exercise: prove this gives an ordering.

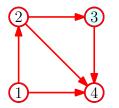
Exercise: show above algorithm can be implemented in O(m + n) time.











DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?