
OLD CS 473: Fundamental Algorithms

Sariel Har-Peled
sariel@illinois.edu

3306 SC

University of Illinois, Urbana-Champaign

Spring 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 94

OLD CS 473: Fundamental Algorithms, Spring

2015

Administrivia, Introduction,
Graph basics and DFS
Lecture 1
January 20, 2015

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 94

The word “algorithm” comes from...

Muhammad ibn Musa al-Khwarizmi
780-850 AD
The word “algebra” is taken from the title of one of his books.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 94

Part I

Administrivia

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 94

Instructional Staff

1 Instructor:

Sariel Har-Peled (sariel)

2 Teaching Assistants:

1 Quanrud Kent.
2 Agrawal Shashank.

3 Office hours:

1 Instructor: See course webpage
2 TAs: Friday, 10:00-13:00 in MEB 256.

MEB = Mechanical engineering building.

4 Email: See course webpage

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 94

http://www.fs.uiuc.edu/ada/0112.html

Online resources

1 Webpage:
http://courses.engr.illinois.edu/cs473/sp2015/

General information, homeworks, etc.

2 Moodle:
https://learn.illinois.edu/course/view.php?id=10239

Quizzes, solutions to homeworks.

3 Online questions/announcements: Piazza
http://piazza.com/illinois/spring2015/cs473/home

Online discussions, etc.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 94

http://courses.engr.illinois.edu/cs473/sp2015/
https://learn.illinois.edu/course/view.php?id=10239
http://piazza.com/illinois/spring2015/cs473/home

Textbooks

1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)
and CS 373 (theory of computation)

2 Recommended books:
1 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
2 Algorithm Design by Kleinberg & Tardos

3 Lecture notes: Available on the web-page after every class.
4 Additional References

1 Previous class notes of Jeff Erickson, and the instructor.
2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 94

Prerequisites

1 Asymptotic notation: O(),Ω(), o().

2 Discrete Structures: sets, functions, relations, equivalence classes, partial orders, trees, graphs

3 Logic: predicate logic, boolean algebra

4 Proofs: by induction, by contradiction

5 Basic sums and recurrences: sum of a geometric series, unrolling of recurrences, basic calculus

6 Data Structures: arrays, multi-dimensional arrays, linked lists, trees, balanced search trees, heaps

7 Abstract Data Types: lists, stacks, queues, dictionaries, priority queues

8 Algorithms: sorting (merge, quick, insertion), pre/post/in order traversal of trees, depth/breadth first search of trees
(maybe graphs)

9 Basic analysis of algorithms: loops and nested loops, deriving recurrences from a recursive program

10 Concepts from Theory of Computation: languages, automata, Turing machine, undecidability, non-determinism

11 Programming: in some general purpose language

12 Elementary Discrete Probability: event, random variable, independence

13 Mathematical maturity

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 94

Grading Policy: Overview

1 Attendance/clickers: 5%

2 Quizzes: 5%

3 Homeworks: 20%

4 Midterms: 40% (2 × 20%)

5 Final: 30% (covers the full course content)

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 94

Homeworks

1 One quiz every week: Due by midnight on Sunday.

2 One homework every week: Assigned on Tuesday and due the
following Monday at noon.

3 Submit in homework box in the basement.
4 Homeworks can be worked on in groups of up to 3 and each

group submits one written solution (except Homework 0).
1 Short quiz-style questions are to be answered individually on

Moodle.

5 Groups can be changed a few times only

6 Unlike previous years no oral homework this semester due to
large enrollment.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 94

More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, the homework with the least score will be
dropped in calculating the homework average.

3 Important: Read homework faq/instructions on website.

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 94

Discussion Sessions

1 50min problem solving session led by TAs
2 Four sections all in SC 1214.

1 Thursday
4–4:50pm,
5–5:50pm.

3 Attendance is required for both discussion sections/lectures.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 94

Advice

1 Attend lectures, please ask plenty of questions.

2 Clickers...

3 Attend discussion sessions.

4 Don’t skip homework and don’t copy homework solutions.

5 Study regularly and keep up with the course.

6 Ask for help promptly. Make use of office hours.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 94

Homeworks

1 HW 0 is posted on the class website. Quiz 0 available

2 Quiz 0 due by Sunday January 25 midnight
HW 0 due on Monday, January 26 at noon.

3 HW 0 to be submitted individually.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 94

Part II

Course Goals and Overview

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 94

Topics

1 Some fundamental algorithms
2 Broadly applicable techniques in algorithm design

1 Understanding problem structure
2 Brute force enumeration and backtrack search
3 Reductions
4 Recursion

1 Divide and Conquer
2 Dynamic Programming

5 Greedy methods
6 Network Flows and Linear/Integer Programming (optional)

3 Analysis techniques
1 Correctness of algorithms via induction and other methods
2 Recurrences
3 Amortization and elementary potential functions

4 Polynomial-time Reductions, NP-Completeness, Heuristics

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 94

Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems, ideas

3 Understand/appreciate limits of computation (intractability)

4 Appreciate the importance of algorithms in computer science
and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

5 Have fun!!!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 94

Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems, ideas

3 Understand/appreciate limits of computation (intractability)

4 Appreciate the importance of algorithms in computer science
and beyond (engineering, mathematics, natural sciences, social
sciences, ...)

5 Have fun!!!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 94

Part III

Some Algorithmic Problems in the
Real World

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 94

Shortest Paths

Directions to Chicago, IL

136 mi – about 2 hours 20 mins

Champaign, IL to Chicago, IL - Google Maps http://maps.google.com/maps?f=d&saddr=Champaign,+IL&da...

1 of 2 8/21/08 3:57 PM

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 94

Shortest Paths - Paris to Berlin

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 94

Digital Information: Compression and Coding

Compression: reduce size for storage and transmission
Coding: add redundancy to protect against errors in storage and
transmission

Efficient algorithms for compression/coding and
decompressing/decoding part of most modern gadgets (computers,
phones, music/video players ...)

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 94

Search and Indexing
String Matching and Link Analysis

1 Web search: Google, Yahoo!, Microsoft, Ask, ...

2 Text search: Text editors (Emacs, Word, Browsers, ...)

3 Regular expression search: grep, egrep, emacs, Perl, Awk,
compilers

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 94

Public-Key Cryptography

Foundation of Electronic Commerce

RSA Crypto-system: generate key n = pq where p, q are primes

Primality: Given a number N , check if N is a prime or composite.

Factoring: Given a composite number N , find a non-trivial factor

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 94

Public-Key Cryptography

Foundation of Electronic Commerce

RSA Crypto-system: generate key n = pq where p, q are primes

Primality: Given a number N , check if N is a prime or composite.

Factoring: Given a composite number N , find a non-trivial factor

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 94

Programming: Parsing and Debugging

[godavari: /temp/test] chekuri % gcc main.c

Parsing: Is main.c a syntactically valid C program?

Debugging: Will main.c go into an infinite loop on some input?

Easier problem ??? Will main.c halt on the specific input 10?

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 94

Optimization

Find the cheapest of most profitable way to do things

1 Airline schedules - AA, Delta, ...

2 Vehicle routing - trucking and transportation (UPS, FedEx,
Union Pacific, ...)

3 Network Design - AT&T, Sprint, Level3 ...

Linear and Integer programming problems

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 94

Part IV

Algorithm Design

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 94

Important Ingredients in Algorithm Design

1 What is the problem (really)?
1 What is the input? How is it represented?
2 What is the output?

2 What is the model of computation? What basic operations are
allowed?

3 Algorithm design

4 Analysis of correctness, running time, space etc.

5 Algorithmic engineering: evaluating and understanding of
algorithm’s performance in practice, performance tweaks,
comparison with other algorithms etc. (Not covered in this
course)

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing

Problem
Given an integer N > 0, is N a prime?

SimpleAlgorithm:

for i = 2 to ⌊
√

N⌋ do
if i divides N then

return ‘‘COMPOSITE’’

return ‘‘PRIME’’

Correctness? If N is composite, at least one factor in {2, . . . ,
√

N}
Running time? O(

√
N) divisions? Sub-linear in input size! Wrong!

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 94

Primality testing
...Polynomial means... in input size

How many bits to represent N in binary? ⌈logN⌉ bits.

Simple Algorithm takes
√

N = 2(log N)/2 time.
Exponential in the input size n = logN .

1 Modern cryptography: binary numbers with 128, 256, 512 bits.

2 Simple Algorithm will take 264, 2128, 2256 steps!

3 Fastest computer today about 3 petaFlops/sec: 3× 250 floating
point ops/sec.

Lesson:
Pay attention to representation size in analyzing efficiency of
algorithms. Especially in number problems.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 94

Primality testing
...Polynomial means... in input size

How many bits to represent N in binary? ⌈logN⌉ bits.

Simple Algorithm takes
√

N = 2(log N)/2 time.
Exponential in the input size n = logN .

1 Modern cryptography: binary numbers with 128, 256, 512 bits.

2 Simple Algorithm will take 264, 2128, 2256 steps!

3 Fastest computer today about 3 petaFlops/sec: 3× 250 floating
point ops/sec.

Lesson:
Pay attention to representation size in analyzing efficiency of
algorithms. Especially in number problems.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 94

Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n),O(n log n),O(n2),O(n3),O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 94

Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n),O(n log n),O(n2),O(n3),O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 94

Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n),O(n log n),O(n2),O(n3),O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 94

Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n),O(n log n),O(n2),O(n3),O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 94

Efficient algorithms

So, is there an efficient/good/effective algorithm for primality?

Question:
What does efficiency mean?

In this class efficiency is broadly equated to polynomial time.
O(n),O(n log n),O(n2),O(n3),O(n100), . . . where n is size of
the input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound way
to define efficiency. Has been useful for several decades.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 94

TSP problem
Lincoln’s tour

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in

S
p

rin
gfi

eld

Taylorville

Sullivan

Shelbyville

Mt.

Pu
las

ki

D
ecato

r

1 Circuit court - ride through
counties staying a few days in
each town.

2 Lincoln was a lawyer traveling
with the Eighth Judicial
Circuit.

3 Picture: travel during 1850.
1 Very close to optimal tour.
2 Might have been optimal

at the time..

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 94

Solving TSP by a Computer
Is it hard?

1 n = number of cities.

2 n2: size of input.

3 Number of possible solutions is

n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 2 ∗ 1 = n!.

4 n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 94

Solving TSP by a Computer
Fastest computer...

1 Fastest super computer can do (roughly)

2.5 ∗ 1015

operations a second.
2 Assume: computer checks 2.5 ∗ 1015 solutions every second,

then...
1 n = 20 =⇒ 2 hours.
2 n = 25 =⇒ 200 years.
3 n = 37 =⇒ 2 ∗ 1020 years!!!

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 94

What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops
5 0 secs 0 secs 0 secs 0 secs
20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years
100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never
16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 94

What is a good algorithm?
Running time...

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 94

Primes is in P!

Theorem (Agrawal-Kayal-Saxena’02)

There is a polynomial time algorithm for primality.

First polynomial time algorithm for testing primality. Running time is
O(log12 N) further improved to about O(log6 N) by others. In
terms of input size n = logN , time is O(n6).

Breakthrough announced in August 2002. Three days later
announced in New York Times. Only 9 pages!

Neeraj Kayal and Nitin Saxena were undergraduates at IIT-Kanpur!

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 94

What about before 2002?

Primality testing a key part of cryptography. What was the algorithm
being used before 2002?
Miller-Rabin randomized algorithm:

1 runs in polynomial time: O(log3 N) time

2 if N is prime correctly says “yes”.

3 if N is composite it says “yes” with probability at most 1/2100

(can be reduced further at the expense of more running time).

Based on Fermat’s little theorem and some basic number theory.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 94

Factoring

1 Modern public-key cryptography based on RSA
(Rivest-Shamir-Adelman) system.

2 Relies on the difficulty of factoring a composite number into its
prime factors.

3 There is a polynomial time algorithm that decides whether a
given number N is prime or not (hence composite or not) but no
known polynomial time algorithm to factor a given number.

Lesson
Intractability can be useful!

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 94

Factoring

1 Modern public-key cryptography based on RSA
(Rivest-Shamir-Adelman) system.

2 Relies on the difficulty of factoring a composite number into its
prime factors.

3 There is a polynomial time algorithm that decides whether a
given number N is prime or not (hence composite or not) but no
known polynomial time algorithm to factor a given number.

Lesson
Intractability can be useful!

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 94

Digression: decision, search and optimization

Three variants of problems.

1 Decision problem: answer is yes or no.
Example: Given integer N , is it a composite number?

2 Search problem: answer is a feasible solution if it exists.
Example: Given integer N , if N is composite output a
non-trivial factor p of N .

3 Optimization problem: answer is the best feasible solution (if
one exists).
Example: Given integer N , if N is composite output the
smallest non-trivial factor p of N .

For a given underlying problem:

Optimization ≥ Search ≥ Decision

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 94

Digression: decision, search and optimization

Three variants of problems.

1 Decision problem: answer is yes or no.
Example: Given integer N , is it a composite number?

2 Search problem: answer is a feasible solution if it exists.
Example: Given integer N , if N is composite output a
non-trivial factor p of N .

3 Optimization problem: answer is the best feasible solution (if
one exists).
Example: Given integer N , if N is composite output the
smallest non-trivial factor p of N .

For a given underlying problem:

Optimization ≥ Search ≥ Decision

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 94

Quantum Computing

Theorem (Shor’1994)

There is a polynomial time algorithm for factoring on a quantum
computer.

RSA and current commercial cryptographic systems can be broken if
a quantum computer can be built!

Lesson
Pay attention to the model of computation.

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 94

Quantum Computing

Theorem (Shor’1994)

There is a polynomial time algorithm for factoring on a quantum
computer.

RSA and current commercial cryptographic systems can be broken if
a quantum computer can be built!

Lesson
Pay attention to the model of computation.

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 94

Problems and Algorithms

Many many different problems.

1 Adding two numbers: efficient and simple algorithm

2 Sorting: efficient and not too difficult to design algorithm

3 Primality testing: simple and basic problem, took a long time to
find efficient algorithm

4 Factoring: no efficient algorithm known.

5 Halting problem: important problem in practice, undecidable!

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 94

Multiplying Numbers

Problem Given two n-digit numbers x and y , compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 94

Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n
3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 94

Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists and O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 94

Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists and O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 94

Course Approach

Algorithm design requires a mix of skill, experience, mathematical
background/maturity and ingenuity.

Approach in this class and many others:

1 Improve skills by showing various tools in the abstract and with
concrete examples

2 Improve experience by giving many problems to solve

3 Motivate and inspire

4 Creativity: you are on your own!

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 94

What model of computation do we use?

Turing Machine?

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 94

What model of computation do we use?

Turing Machine?

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 94

Turing Machines: Recap

1 Infinite tape

2 Finite state control

3 Input at beginning of tape

4 Special tape letter
“blank” ⊔

5 Head can move only one
cell to left or right

Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 94

Turing Machines

1 Basic unit of data is a bit (or a single character from a finite
alphabet)

2 Algorithm is the finite control

3 Time is number of steps/head moves

Pros and Cons:

1 theoretically sound, robust and simple model that underpins
computational complexity.

2 polynomial time equivalent to any reasonable “real” computer:
Church-Turing thesis

3 too low-level and cumbersome, does not model actual computers
for many realistic settings

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 94

Turing Machines

1 Basic unit of data is a bit (or a single character from a finite
alphabet)

2 Algorithm is the finite control

3 Time is number of steps/head moves

Pros and Cons:

1 theoretically sound, robust and simple model that underpins
computational complexity.

2 polynomial time equivalent to any reasonable “real” computer:
Church-Turing thesis

3 too low-level and cumbersome, does not model actual computers
for many realistic settings

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 94

“Real” Computers vs Turing Machines

How do “real” computers differ from TMs?

1 random access to memory

2 pointers

3 arithmetic operations (addition, subtraction, multiplication,
division) in constant time

How do they do it?

1 basic data type is a word: currently 64 bits

2 arithmetic on words are basic instructions of computer

3 memory requirements assumed to be ≤ 264 which allows for
pointers and indirect addressing as well as random access

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 94

“Real” Computers vs Turing Machines

How do “real” computers differ from TMs?

1 random access to memory

2 pointers

3 arithmetic operations (addition, subtraction, multiplication,
division) in constant time

How do they do it?

1 basic data type is a word: currently 64 bits

2 arithmetic on words are basic instructions of computer

3 memory requirements assumed to be ≤ 264 which allows for
pointers and indirect addressing as well as random access

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 94

“Real” Computers vs Turing Machines

How do “real” computers differ from TMs?

1 random access to memory

2 pointers

3 arithmetic operations (addition, subtraction, multiplication,
division) in constant time

How do they do it?

1 basic data type is a word: currently 64 bits

2 arithmetic on words are basic instructions of computer

3 memory requirements assumed to be ≤ 264 which allows for
pointers and indirect addressing as well as random access

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 94

“Real” Computers vs Turing Machines

How do “real” computers differ from TMs?

1 random access to memory

2 pointers

3 arithmetic operations (addition, subtraction, multiplication,
division) in constant time

How do they do it?

1 basic data type is a word: currently 64 bits

2 arithmetic on words are basic instructions of computer

3 memory requirements assumed to be ≤ 264 which allows for
pointers and indirect addressing as well as random access

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 94

Unit-Cost RAM Model

Informal description:

1 Basic data type is an integer/floating point number

2 Numbers in input fit in a word

3 Arithmetic/comparison operations on words take constant time

4 Arrays allow random access (constant time to access A[i])
5 Pointer based data structures via storing addresses in a word

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 94

Example

Sorting: input is an array of n numbers

1 input size is n (ignore the bits in each number),

2 comparing two numbers takes O(1) time,

3 random access to array elements,

4 addition of indices takes constant time,

5 basic arithmetic operations take constant time,

6 reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):

1 bitwise operations (and, or, xor, shift, etc).

2 floor function.

3 limit word size (usually assume unbounded word size).

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 94

Caveats of RAM Model

Unit-Cost RAM model is applicable in wide variety of settings in
practice. However it is not a proper model in several important
situations so one has to be careful.

1 For some problems such as basic arithmetic computation,
unit-cost model makes no sense. Examples: multiplication of
two n-digit numbers, primality etc.

2 Input data is very large and does not satisfy the assumptions
that individual numbers fit into a word or that total memory is
bounded by 2k where k is word length.

3 Assumptions valid only for certain type of algorithms that do not
create large numbers from initial data. For example,
exponentiation creates very big numbers from initial numbers.

Sariel (UIUC) OLD CS473 52 Spring 2015 52 / 94

Models used in class

In this course:

1 Assume unit-cost RAM by default.

2 We will explicitly point out where unit-cost RAM is not
applicable for the problem at hand.

Sariel (UIUC) OLD CS473 53 Spring 2015 53 / 94

Part V

Graph Basics

Sariel (UIUC) OLD CS473 54 Spring 2015 54 / 94

Why Graphs?

1 Graphs help model networks which are ubiquitous: transportation
networks (rail, roads, airways), social networks (interpersonal
relationships), information networks (web page links) etc etc.

2 Fundamental objects in Computer Science, Optimization,
Combinatorics

3 Many important and useful optimization problems are graph
problems

4 Graph theory: elegant, fun and deep mathematics

Sariel (UIUC) OLD CS473 55 Spring 2015 55 / 94

Graph

Definition
An undirected (simple) graph
G = (V ,E) is a 2-tuple:

1 V is a set of vertices (also referred
to as nodes/points)

2 E is a set of edges where each edge
e ∈ E is a set of the form {u, v}
with u, v ∈ V and u ̸= v .

a

b

d e

f

c

g

h

Example

In figure, G = (V ,E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7},
{3, 8}, {4, 5}, {5, 6}, {7, 8}}.

Sariel (UIUC) OLD CS473 56 Spring 2015 56 / 94

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and
hence it is a set. Conventionally we use (u, v) for {u, v} when it is
clear from the context that the graph is undirected.

1 u and v are the end points of an edge {u, v}
2 Multi-graphs allow

1 loops which are edges with the same node appearing as both
end points

2 multi-edges: different edges between same pairs of nodes

3 In this class we will assume that a graph is a simple graph unless
explicitly stated otherwise.

Sariel (UIUC) OLD CS473 57 Spring 2015 57 / 94

Graph Representation I

Adjacency Matrix

Represent G = (V ,E) with n
vertices and m edges using a n × n
adjacency matrix A where

1 A[i , j] = A[j , i] = 1 if
{i , j} ∈ E and
A[i , j] = A[j , i] = 0 if
{i , j} ̸∈ E .

2 Advantage: can check if
{i , j} ∈ E in O(1) time

3 Disadvantage: needs Ω(n2)
space even when m ≪ n2

a

b

d e

f

c

g

h

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

a b c d e f g h

a

b

c

d

e

f

g

1

1

1

1

1 1 1

1

1

1

1

1

1 1 1

1

1

1

1

1

h

1

1

Sariel (UIUC) OLD CS473 58 Spring 2015 58 / 94

Graph Representation II

Adjacency Lists

Represent G = (V ,E) with n vertices and m edges using adjacency
lists:

1 For each u ∈ V , Adj(u) = {v | {u, v} ∈ E}, that is
neighbors of u. Sometimes Adj(u) is the list of edges incident
to u.

2 Advantage: space is O(m + n)
3 Disadvantage: cannot “easily” determine in O(1) time whether

{i , j} ∈ E
1 By sorting each list, one can achieve O(log n) time
2 By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

Sariel (UIUC) OLD CS473 59 Spring 2015 59 / 94

Connectivity

Given a graph G = (V ,E):

1 path: sequence of distinct vertices
v1, v2, . . . , vk .
For i = 1, . . . , k − 1: vivi+1 ∈ E
length of path = k − 1.
The path is from v1 to vk

2 cycle: sequence of distinct vertices
v1, v2, . . . , vk
∀i vivi+1 ∈ E and {v1, vk} ∈ E .

3 A vertex u is connected to v if there is
a path from u to v .

4 The connected component of u,
con(u), is the set of all vertices
connected to u.

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 60 Spring 2015 60 / 94

Connectivity

Given a graph G = (V ,E):

1 path: sequence of distinct vertices
v1, v2, . . . , vk .
For i = 1, . . . , k − 1: vivi+1 ∈ E
length of path = k − 1.
The path is from v1 to vk

2 cycle: sequence of distinct vertices
v1, v2, . . . , vk
∀i vivi+1 ∈ E and {v1, vk} ∈ E .

3 A vertex u is connected to v if there is
a path from u to v .

4 The connected component of u,
con(u), is the set of all vertices
connected to u.

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 60 Spring 2015 60 / 94

Connectivity

Given a graph G = (V ,E):

1 path: sequence of distinct vertices
v1, v2, . . . , vk .
For i = 1, . . . , k − 1: vivi+1 ∈ E
length of path = k − 1.
The path is from v1 to vk

2 cycle: sequence of distinct vertices
v1, v2, . . . , vk
∀i vivi+1 ∈ E and {v1, vk} ∈ E .

3 A vertex u is connected to v if there is
a path from u to v .

4 The connected component of u,
con(u), is the set of all vertices
connected to u.

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 60 Spring 2015 60 / 94

Connectivity contd

Define a relation C on V × V as uCv if
u is connected to v

1 In undirected graphs, connectivity is
a reflexive, symmetric, and transitive
relation. Connected components are
the equivalence classes.

2 Graph is connected if only one
connected component.

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Graphs
Connectivity in Graphs
Trees
Graph Representation

Connected Graphs

1

2 3

4 5

6

7

8

9

10

Definition

The set of connected components of a graph is the set
{con(u) | u ∈ V }

The connected components in the above graph are
{1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}

A graph is said to be connected when it has exactly one
connected component.

In other words, every pair of vertices in
the graph are connected.

Viswanathan CS473ug
Sariel (UIUC) OLD CS473 61 Spring 2015 61 / 94

Connectivity Problems

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.

Sariel (UIUC) OLD CS473 62 Spring 2015 62 / 94

Connectivity Problems

Algorithmic Problems
1 Given graph G and nodes u and v , is u connected to v?
2 Given G and node u, find all nodes that are connected to u.
3 Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.

Sariel (UIUC) OLD CS473 62 Spring 2015 62 / 94

Basic Graph Search

Given G = (V ,E) and vertex u ∈ V :

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y ̸∈ S do

add y to S

Proposition

Explore(u) terminates with S = con(u).

Running time: depends on implementation

1 Breadth First Search (BFS): use queue data structure

2 Depth First Search (DFS): use stack data structure

3 Review CS 225 material!

Sariel (UIUC) OLD CS473 63 Spring 2015 63 / 94

Basic Graph Search

Given G = (V ,E) and vertex u ∈ V :

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y ̸∈ S do

add y to S

Proposition

Explore(u) terminates with S = con(u).

Running time: depends on implementation

1 Breadth First Search (BFS): use queue data structure

2 Depth First Search (DFS): use stack data structure

3 Review CS 225 material!

Sariel (UIUC) OLD CS473 63 Spring 2015 63 / 94

Basic Graph Search

Given G = (V ,E) and vertex u ∈ V :

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y ̸∈ S do

add y to S

Proposition

Explore(u) terminates with S = con(u).

Running time: depends on implementation

1 Breadth First Search (BFS): use queue data structure

2 Depth First Search (DFS): use stack data structure

3 Review CS 225 material!

Sariel (UIUC) OLD CS473 63 Spring 2015 63 / 94

Part VI

DFS

Sariel (UIUC) OLD CS473 64 Spring 2015 64 / 94

1.4: DFS

Sariel (UIUC) OLD CS473 65 Spring 2015 65 / 94

Depth First Search

DFS: versatile graph exploration strategy. Hopcroft and Tarjan
demonstrated the power of DFS to understand graph structure. DFS
can be used to obtain linear time (O(m + n)) time algorithms for

1 Finding cut-edges and cut-vertices of undirected graphs.

2 Finding strong connected components of directed graphs.

3 Linear time algorithm for testing whether a graph is planar.

Sariel (UIUC) OLD CS473 66 Spring 2015 66 / 94

DFS in Undirected Graphs

Recursive version.

DFS(G)
Mark all nodes u as unvisited

while there is an unvisited node u do
DFS(u)

DFS(u)
Mark u as visited

for each edge (u,v) in Adj(u) do
if v is not marked

DFS(v)

Implemented using a global array Mark for all recursive calls.

Sariel (UIUC) OLD CS473 67 Spring 2015 67 / 94

Example

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 68 Spring 2015 68 / 94

DFS Tree/Forest

DFS(G)
Mark all nodes as unvisited

T is set to ∅
while ∃ unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for uv in Ajd(u) do
if v is not marked

add uv to T
DFS(v)

Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T
2 non-tree edge: does not belong to T

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 94

DFS Tree/Forest

DFS(G)
Mark all nodes as unvisited

T is set to ∅
while ∃ unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

for uv in Ajd(u) do
if v is not marked

add uv to T
DFS(v)

Edges classified into two types: uv ∈ E is a

1 tree edge: belongs to T
2 non-tree edge: does not belong to T

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 94

Properties of DFS tree

Proposition
1 T is a forest

2 connected components of T are same as those of G.
3 If uv ∈ E is a non-tree edge then, in T , either:

1 u is an ancestor of v , or
2 v is an ancestor of u.

Question: Why are there no cross-edges?

Sariel (UIUC) OLD CS473 70 Spring 2015 70 / 94

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u ∈ V (G) do

Mark u as unvisited

T is set to ∅
time = 0
while ∃unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time

Sariel (UIUC) OLD CS473 71 Spring 2015 71 / 94

Scratch space

Sariel (UIUC) OLD CS473 72 Spring 2015 72 / 94

Example: DFS with visit times

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 73 Spring 2015 73 / 94

Example

a

b

d e

f

c

g

h

i

j

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7,
g : [8,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7,
g : [8,
c : [9,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7,
g : [8,
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7,
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4,
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3,
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2,
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1,
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1, 16]
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1, 16]
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]
i : [17,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1, 16]
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]
i : [17,
j : [18,

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1, 16]
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]
i : [17,
j : [18,19]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

Example

a

b

d e

f

c

g

h

i

j

a: [1, 16]
b: [2, 15]
d : [3, 14]
e: [4, 13]
f : [5, 6]
h: [7, 12]
g : [8, 11]
c : [9, 10]
i : [17, 20]
j : [18,19]

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v , the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are either disjoint or one is contained in the other.

Proof.
Assume without loss of generality that pre(u) < pre(v). Then
v visited after u.
If DFS(v) invoked before DFS(u) finished,
post(u) > post(v).
If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

pre and post numbers useful in several applications of DFS- soon!

Sariel (UIUC) OLD CS473 75 Spring 2015 75 / 94

Part VII

Directed Graphs and Decomposition

Sariel (UIUC) OLD CS473 76 Spring 2015 76 / 94

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

1 An edge is an ordered pair of vertices.

2 Directed edge written as (u, v) or (u → v).
3 (u → v) is different from (v → u).

Sariel (UIUC) OLD CS473 77 Spring 2015 77 / 94

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

1 An edge is an ordered pair of vertices.

2 Directed edge written as (u, v) or (u → v).
3 (u → v) is different from (v → u).

Sariel (UIUC) OLD CS473 77 Spring 2015 77 / 94

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

1 An edge is an ordered pair of vertices.

2 Directed edge written as (u, v) or (u → v).
3 (u → v) is different from (v → u).

Sariel (UIUC) OLD CS473 77 Spring 2015 77 / 94

Directed Graphs

Definition
A directed graph G = (V ,E)
consists of

1 set of vertices/nodes V
and

2 a set of edges/arcs
E ⊆ V × V .

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

1 An edge is an ordered pair of vertices.

2 Directed edge written as (u, v) or (u → v).
3 (u → v) is different from (v → u).

Sariel (UIUC) OLD CS473 77 Spring 2015 77 / 94

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages. Edge from page p to
page p′ if p has a link to p′. Web graphs used by Google with
PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

Sariel (UIUC) OLD CS473 78 Spring 2015 78 / 94

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages. Edge from page p to
page p′ if p has a link to p′. Web graphs used by Google with
PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

Sariel (UIUC) OLD CS473 78 Spring 2015 78 / 94

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages. Edge from page p to
page p′ if p has a link to p′. Web graphs used by Google with
PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

Sariel (UIUC) OLD CS473 78 Spring 2015 78 / 94

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages. Edge from page p to
page p′ if p has a link to p′. Web graphs used by Google with
PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

Sariel (UIUC) OLD CS473 78 Spring 2015 78 / 94

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

1 Road networks with one-way streets.

2 Web-link graph: vertices are web-pages. Edge from page p to
page p′ if p has a link to p′. Web graphs used by Google with
PageRank algorithm to rank pages.

3 Dependency graphs in variety of applications: link from x to y if
y depends on x . Make files for compiling programs.

4 Program Analysis: functions/procedures are vertices and there is
an edge from x to y if x calls y .

Sariel (UIUC) OLD CS473 78 Spring 2015 78 / 94

Representation

Graph G = (V ,E) with n vertices and m edges:

1 Adjacency Matrix: n × n asymmetric matrix A. A[u, v] = 1
if (u, v) ∈ E and A[u, v] = 0 if (u, v) ̸∈ E . A[u, v] is not
same as A[v , u].

2 Adjacency Lists: for each node u, Out(u) (also referred to as
Adj(u)) and In(u) store out-going edges and in-coming edges
from u.

Default representation is adjacency lists.

Sariel (UIUC) OLD CS473 79 Spring 2015 79 / 94

Directed Connectivity

Given a graph G = (V ,E):

1 A (directed) path is a sequence of distinct vertices
v1, v2, . . . , vk such that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1.
The length of the path is k − 1 and the path is from v1 to vk

2 A cycle is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi , vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk , v1) ∈ E .

3 A vertex u can reach v if there is a path from u to v .
Alternatively v can be reached from u

4 Let rch(u) be the set of all vertices reachable from u.

Sariel (UIUC) OLD CS473 80 Spring 2015 80 / 94

Connectivity contd

Asymmetricity: A can reach B but B cannot reach A

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:

1 Is there a notion of connected components?

2 How do we understand connectivity in directed graphs?

Sariel (UIUC) OLD CS473 81 Spring 2015 81 / 94

Connectivity contd

Asymmetricity: A can reach B but B cannot reach A

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Questions:

1 Is there a notion of connected components?

2 How do we understand connectivity in directed graphs?

Sariel (UIUC) OLD CS473 81 Spring 2015 81 / 94

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can
reach v and v can reach u. In other words v ∈ rch(u) and
u ∈ rch(v).

1 Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation =⇒ reflexive, symmetric and transitive.

2 Equivalence classes of C : strong connected components G.

3 They partition the vertices of G.
SCC(u): strongly connected component containing u.

Sariel (UIUC) OLD CS473 82 Spring 2015 82 / 94

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can
reach v and v can reach u. In other words v ∈ rch(u) and
u ∈ rch(v).

1 Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation =⇒ reflexive, symmetric and transitive.

2 Equivalence classes of C : strong connected components G.

3 They partition the vertices of G.
SCC(u): strongly connected component containing u.

Sariel (UIUC) OLD CS473 82 Spring 2015 82 / 94

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can
reach v and v can reach u. In other words v ∈ rch(u) and
u ∈ rch(v).

1 Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation =⇒ reflexive, symmetric and transitive.

2 Equivalence classes of C : strong connected components G.

3 They partition the vertices of G.
SCC(u): strongly connected component containing u.

Sariel (UIUC) OLD CS473 82 Spring 2015 82 / 94

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can
reach v and v can reach u. In other words v ∈ rch(u) and
u ∈ rch(v).

1 Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation =⇒ reflexive, symmetric and transitive.

2 Equivalence classes of C : strong connected components G.

3 They partition the vertices of G.
SCC(u): strongly connected component containing u.

Sariel (UIUC) OLD CS473 82 Spring 2015 82 / 94

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can
reach v and v can reach u. In other words v ∈ rch(u) and
u ∈ rch(v).

1 Define relation C where uCv if u is (strongly) connected to v .

Proposition
C is an equivalence relation =⇒ reflexive, symmetric and transitive.

2 Equivalence classes of C : strong connected components G.

3 They partition the vertices of G.
SCC(u): strongly connected component containing u.

Sariel (UIUC) OLD CS473 82 Spring 2015 82 / 94

Strongly Connected Components: Example

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

Sariel (UIUC) OLD CS473 83 Spring 2015 83 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

Problems on Directed Graph Connectivity

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

First four problems can be solve in O(n + m) time by adapting
BFS/DFS to directed graphs. The last one requires a clever DFS
based algorithm.

Sariel (UIUC) OLD CS473 84 Spring 2015 84 / 94

DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not marked

add edge (u, v) to T
DFS(v)

post(u) = ++time
Sariel (UIUC) OLD CS473 85 Spring 2015 85 / 94

Example

AB C

DE F

G H

Sariel (UIUC) OLD CS473 86 Spring 2015 86 / 94

DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(u) outputs a directed out-tree T rooted at u
2 A vertex v is in T if and only if v ∈ rch(u)
3 For any two vertices x, y the intervals [pre(x), post(x)] and

[pre(y), post(y)] are either disjoint are one is contained in the
other.

4 The running time of DFS(u) is O(k) where
k =

∑
v∈rch(u) |Adj(v)| plus the time to initialize the Mark

array.

5 DFS(G) takes O(m + n) time. Edges in T form a disjoint
collection of of out-trees. Output of DFS(G) depends on the
order in which vertices are considered.

Sariel (UIUC) OLD CS473 87 Spring 2015 87 / 94

DFS Tree

Edges of G can be classified with respect to the DFS tree T as:

1 Tree edges that belong to T
2 A forward edge is a non-tree edges (x, y) such that

pre(x) < pre(y) < post(y) < post(x).
3 A backward edge is a non-tree edge (x, y) such that

pre(y) < pre(x) < post(x) < post(y).
4 A cross edge is a non-tree edges (x, y) such that the intervals

[pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Sariel (UIUC) OLD CS473 88 Spring 2015 88 / 94

Types of Edges

A

B

C D

Cross

Forward

Backward

Sariel (UIUC) OLD CS473 89 Spring 2015 89 / 94

Directed Graph Connectivity Problems

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).
3 Given G and u, compute all v that can reach u, that is all v

such that u ∈ rch(v).
4 Find the strongly connected component containing node u, that

is SCC(u).
5 Is G strongly connected (a single strong component)?

6 Compute all strongly connected components of G.

Sariel (UIUC) OLD CS473 90 Spring 2015 90 / 94

Algorithms via DFS- I

1 Given G and nodes u and v , can u reach v?
2 Given G and u, compute rch(u).

Use DFS(G , u) to compute rch(u) in O(n + m) time.

Sariel (UIUC) OLD CS473 91 Spring 2015 91 / 94

Algorithms via DFS- II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise
2 Running time: O(n + m) to obtain G rev from G and

O(n + m) time to compute rch(u) via DFS. If both Out(v)
and In(v) are available at each v then no need to explicitly
compute G rev . Can do it DFS(u) in G rev implicitly.

Sariel (UIUC) OLD CS473 92 Spring 2015 92 / 94

Algorithms via DFS- II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise
2 Running time: O(n + m) to obtain G rev from G and

O(n + m) time to compute rch(u) via DFS. If both Out(v)
and In(v) are available at each v then no need to explicitly
compute G rev . Can do it DFS(u) in G rev implicitly.

Sariel (UIUC) OLD CS473 92 Spring 2015 92 / 94

Algorithms via DFS- II

1 Given G and u, compute all v that can reach u, that is all v
such that u ∈ rch(v).

Definition (Reverse graph.)

Given G = (V ,E), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise
2 Running time: O(n + m) to obtain G rev from G and

O(n + m) time to compute rch(u) via DFS. If both Out(v)
and In(v) are available at each v then no need to explicitly
compute G rev . Can do it DFS(u) in G rev implicitly.

Sariel (UIUC) OLD CS473 92 Spring 2015 92 / 94

Algorithms via DFS- III

SC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with two DFSes, one in G and
the other in G rev . Total O(n + m) time.

Sariel (UIUC) OLD CS473 93 Spring 2015 93 / 94

Algorithms via DFS- III

SC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with two DFSes, one in G and
the other in G rev . Total O(n + m) time.

Sariel (UIUC) OLD CS473 93 Spring 2015 93 / 94

Algorithms via DFS- III

SC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with two DFSes, one in G and
the other in G rev . Total O(n + m) time.

Sariel (UIUC) OLD CS473 93 Spring 2015 93 / 94

Algorithms via DFS- III

SC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u.

That is, compute SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with two DFSes, one in G and
the other in G rev . Total O(n + m) time.

Sariel (UIUC) OLD CS473 93 Spring 2015 93 / 94

Algorithms via DFS- IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SC(G , u) = V .

Sariel (UIUC) OLD CS473 94 Spring 2015 94 / 94

Algorithms via DFS- IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SC(G , u) = V .

Sariel (UIUC) OLD CS473 94 Spring 2015 94 / 94

Algorithms via DFS- V

1 Find all strongly connected components of G.

for each vertex u ∈ V do
find SC(G , u)

Running time: O(n(n + m)).

Q: Can we do it in O(n + m) time?

Sariel (UIUC) OLD CS473 95 Spring 2015 95 / 94

Algorithms via DFS- V

1 Find all strongly connected components of G.

for each vertex u ∈ V do
find SC(G , u)

Running time: O(n(n + m)).

Q: Can we do it in O(n + m) time?

Sariel (UIUC) OLD CS473 95 Spring 2015 95 / 94

Algorithms via DFS- V

1 Find all strongly connected components of G.

for each vertex u ∈ V do
find SC(G , u)

Running time: O(n(n + m)).

Q: Can we do it in O(n + m) time?

Sariel (UIUC) OLD CS473 95 Spring 2015 95 / 94

Algorithms via DFS- V

1 Find all strongly connected components of G.

for each vertex u ∈ V do
find SC(G , u)

Running time: O(n(n + m)).

Q: Can we do it in O(n + m) time?

Sariel (UIUC) OLD CS473 95 Spring 2015 95 / 94

Reading and Homework 0

Chapters 1 from Dasgupta etal book, Chapters 1-3 from
Kleinberg-Tardos book.

Proving algorithms correct - Jeff Erickson’s notes (see link on
website)

Sariel (UIUC) OLD CS473 96 Spring 2015 96 / 94

Notes

Sariel (UIUC) OLD CS473 97 Spring 2015 97 / 94

Notes

Sariel (UIUC) OLD CS473 98 Spring 2015 98 / 94

Notes

Sariel (UIUC) OLD CS473 99 Spring 2015 99 / 94

Notes

Sariel (UIUC) OLD CS473 100 Spring 2015 100 / 94

	Administrivia
	Course Goals and Overview
	Some Algorithmic Problems in the Real World
	Algorithm Design
	Primality Testing
	Primality
	Factoring

	Multiplication
	Model of Computation

	Graph Basics
	DFS
	DFS

	Directed Graphs and Decomposition
	Introduction
	DFS in Directed Graphs
	Algorithms via DFS

