
HW 8 (due Monday, Noon, April 13, 2015)
OLD CS 473: Fundamental Algorithms, Spring 2015 Version: 1.07

Collaboration Policy: For this homework, Problems 1–3 can be worked in groups of up to three students.

1. (30 pts.) Accumulator Faience strikes back.
The Accumulator Faience department at UISB1 has n members. For obvious reasons, after all it is a faience
department, they need to participate in various pottery competitions yearly. There are m competitions
each year and the jth competition needs pj participants. Let Ti ⊆ {1, 2, . . . ,m} be the set of competitions
that the ith participant has volunteered for. A competition assignment consists of sets T ′

1, T
′
2, . . . , T

′
n where

T ′
i ⊆ {1, 2, . . . ,m} is the set of competitions that participant i will participate in. A valid competition

assignment has to satisfy two constraints:
(i) for each participant i, T ′

i ⊆ Ti, that is each member is only participating in competitions that he/she
has volunteered for, and

(ii) each competition j has pj participants assigned to it, or in other words j occurs in at least pj of the
sets T ′

1, T
′
2, . . . , T

′
n.

Unfortunately, often there is no valid competition assignment because people specializing in Accumulator
Faience rarely venture outside their homes or offices2. To overcome this, the definition of a valid assignment
is relaxed as follows. Let ν be some integer. An assignment T ′

1, T
′
2, . . . , T

′
n is now said to be valid if

(i) |T ′
i \ Ti| ≤ ν and

(ii) each competition j has exactly pj people participating in it.
The new condition (i) means that a member i may participate up to ν competitions not on the list Ti that
he/she/it volunteered for. Describe an algorithm, as fast as possible, to check if there is a valid competition
assignment with the relaxed definition. What is the running time of your algorithm?

2. (30 pts.) Augmenting Paths in Residual Networks.
You are given an integral instance G of network flow. Let C be the value of the maximum flow in G.
(A) (6 pts.) Given a flow f in G, and its residual network Gf , describe how to compute, as fast as possible,

the largest capacity augmenting path flow from s to t. Formally, given a path π in the residual network,
its residual capacity is cf (π) = maxe∈π cf (
Prove the correctness of your algorithm.

(B) (6 pts.) Prove, that if the maximum flow in Gf has value T , then the augmenting path you found in
(A) has capacity at least T/m.

(C) (6 pts.) Consider the algorithm that starts with the empty flow f , and repeatedly applies (A) to
Gf (recomputing it after each iteration) until s and t are disconnected. Prove that this algorithm
computes the maximum flow in G.

(D) (6 pts.) Consider the algorithm from (C), and the flow g it computes after m iterations. Prove that
|g| ≥ C/10 (here 10 is not tight).

(E) (6 pts.) Give a bound, as tight as possible, on the running time of your algorithm, as a function of n,
m, and C.

3. (40 pts.) Matching via augmenting paths.
Given an undirected, bipartite graph G = (V,E), where V = L∪R and all edges have exactly one endpoint
in L, let M be a matching in G (i.e., a collection of edges that do not share an endpoint). We say that a
simple path P in G is an augmenting path with respect to M if it starts at an unmatched vertex in L,
ends at an unmatched vertex in R, and its edges belong alternatively to M and E\M . (This definition of an
augmenting path is related to, but different from, an augmenting path in a flow network.) In this problem,

1The university of Illinois, in Shampoo-Banana
2Or cardboards, if they are homeless and unemployed.

1

we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest augmenting path
with respect to a matching M is an augmenting path with a minimum number of edges.
Given two sets A and B, the symmetric difference A ⊕ B is defined as (A − B) ∪ (B − A), that is, the
elements that are in exactly one of the two sets.
(A) (10 pts.) Show that if M is a matching and P is an augmenting path with respect to M , then the

symmetric difference M ⊕ P is a matching and |M ⊕ P | = |M |+ 1.
(B) (10 pts.) Given two matchings M and M∗ in G, show that every vertex in the graph G′ = (V,M⊕M∗)

has degree at most 2. Conclude that G′ is a disjoint union of simple paths or cycles. Argue that edges
in each such simple path or cycle belong alternatively to M or M∗. Prove that if |M | ≤ |M∗|, then
M ⊕M∗ contains at least |M∗| − |M | vertex-disjoint augmenting paths with respect to M .

(C) (10 pts.) Given a bipartite graph G and a matching M that is not a maximum matching, describe how
to orient the edges of G and modify the vertices of G, such that deciding if G contains an augmenting
path, can be done by running DFS of BFS on the resulting graph. In particular, describe a linear
time algorithm (using this approach) for computing an augmenting path to M in the graph G if it
exists.

(D) (10 pts.) Describe an O(nm) time algorithm for computing a maximum matching in a bipartite graph
using the algorithm from (B).

2

