
HW 1 (due Monday, at noon, February 2, 2015)
OLD CS 473: Fundamental Algorithms, Spring 2015 Version: 1.2

You also have to do quiz 1 online (on moodle).

Collaboration Policy: For this homework, Problems 1–3 can be worked in groups of up to three students.

1. (40 pts.) A bridge to nowhere.
Given a connected undirected graph G = (V,E), an edge e = (u, v) is a bridge , or a cut-edge , if removing
e disconnects the graph into two pieces, one containing u and the other containing v. A vertex u is a
separating vertex , or cut-vertex , if removing u leaves the graph into two or more disconnected pieces;
note that u does not count as one of the pieces in this definition. Your goal in this problem is to develop a
linear time algorithm to find all the bridges and cut-vertices of a given graph using DFS. Let T be a DFS
tree of G (note that it is rooted at the first node from which DFS is called). For a node v we will use the
notation Tv to denote the sub-tree of T hanging at v (includes v).
(A) In the graph shown in the figure, identify all the bridges and cut-vertices.

A B

C

D E

F G

HI

K

L

MN

J

O

(B) Prove that any bridge of G has to be a tree edge in every DFS(G). Prove that the maximum number
of bridges in G is n− 1, and provide an example realizing this bound.

(C) Suppose e = (u, v) is a tree-edge in DFS(G) with pre(u) < pre(v). Prove that e is a bridge if and only
if there is no edge from any node in Tv to either u or any of its ancestors.

(D) For each node u define:

low(u) = min

{
pre(u)
pre(w) where (v, w) is a back edge for some descendant v of u

Give a linear time algorithm that computes the low value for all nodes by adapting DFS(G). Give the
altered pseudo-code of DFS(G) to do this.

(E) Give a linear time algorithm that identifies all the bridges of G using the low values and the steps
above. Specifically, provide pseudo-code for a linear time algorithm to do so. There is no need to prove
that your code is correct.

(F) Prove that the root of the DFS tree is a cut-vertex if and only if it has two or more children.
(G) Prove that a non-root vertex u of the DFS tree T is a cut-vertex if and only if it has a child v such

that no node in Tv has a backedge to a proper ancestor of u (that is, an ancestor of u which is not u
itself).

(H) The above two properties can be used to find all the cut-vertices in linear time. Give the pseudo-code
for a linear time algorithm to do so. There is no need to prove that your code is correct.

2. (30 pts.) Partitioning numbers.
Let G = (V,E) be a directed graph with 2n vertices: V = {1, . . . , n,−1,−2, . . . ,−n}. This graph has the
property that if the edge (u, v) is in the graph, then (−v,−u) is also in the graph. Our purpose is to pick
a set X of n vertices in the graph, such that:

1

(I) There is no directed edge from a vertex of X to a vertex of V \X.
(II) There is no i such that both i and −i are in X.

(III) |X| = n.
As an example, consider the following graph:

-1 -2 -3 -4 -5

1 2 3 4 5

(A) (5 pts.) Prove that if i and −i are in the same strong connected component of G, then there is no
such partition.

(B) (5 pts.) Consider a strong connected component S = {s1, . . . , sk} of G. Prove that −S =
{−s1, . . . ,−sk} is also a strong connected component of this graph.

(C) (5 pts.) Prove that if S is a strong connected component of G that is a sink in the meta graph
GSCC, then −S is a source in the meta graph GSCC.

(D) (5 pts.) Describe a linear time algorithm that decides if there is a number i such that both i and
−i are in the same strong connected component of G.

(E) (10 pts.) Describe an algorithm that in linear time decides if the desired partition exists, and if it
exists it outputs it. Prove the correctness of your algorithm.

3. (40 pts.) Profitable path.
Consider a DAG G with n vertices and m edges. Each vertex v of G corresponds to a project, with profit
pv (which might be negative, if it is a losing project). A vertex v is profitable if pv > 0.
(A) (10 pts.) Show an algorithm that in linear time computes all the vertices that can reach a sink of G

via a path that goes through at least one profitable vertex.
(B) (10 pts.) Show an algorithm that in linear time computes all the vertices that can reach a sink of G

via a path that goes through at least β profitable vertices, where β is a prespecified parameter.
(C) (10 pts.) Show an algorithm, as fast as possible, that computes for all the vertices v in G the most

profitable path from v to any sink of G. The profit of a path is the total sum of the profits of vertices
along the path.

(D) (10 pts.) Using the above, describe how to compute, in linear time, a path that visits all the vertices
of G if such a path exists.

2

