
HW 7 (due Wednesday, at noon, March 27, 2013)
CS 473: Fundamental Algorithms, Spring 2013 Version: 1.0

Make sure that you write the solutions for the problems on separate sheets of paper. Write your
name and netid on each sheet.

Collaboration Policy: The homework can be worked in groups of up to 3 students each.

1. (40 pts.) Surf’s up.
The Illinois (Vampire) Surfing Association decided to send a few teams to the surfing compe-
tition that happens every year in Kauai. It is decided that each team of surfers will satisfy
the following: for every surfer in the Association, either she has to be in the team or one of
her friends has to be in the team. Such a team is called valid. The president of the Associa-
tion would like to send as many teams as possible to Kauai in order to maximize the chances
of some Illinois team to win. His goal is to find the maximum number (surfout number) of
mutually disjoint valid teams that can compete.
Let G = (V,E) be an undirected graph where V consists of all the Illinois surfers and an edge
(u, v) indicates that surfer u is friends with surfer v. Let δ be the degree of a minimum degree
node in G. It is easy to see that the surfout number of G is at most (δ+1) since each valid team
has to contain u or some neighbor of u where u is a node with degree δ. In this problem we
will see that the surfout number of an association of n surfers where the representing graph G
has minimum degree δ is at least as large as ⌈ δ+1

c lnn⌉ for some sufficient large universal constant
c. Note that this guarantees to send only 1 valid team in the competition if δ < c lnn (the
entire group of surfers can be chosen as the team). Let k = ⌈ δ+1

c lnn⌉. Consider the following
randomized algorithm. To each surfer u independently give a team shirt with number g(u)
written on it, that is chosen uniformly at random from the numbers {1, 2, . . . , k}.
(A) (20 pts.) For a fixed surfer v and a fixed number i show that with probability at least

1− 1/n2 there is a surfer with shirt number i that is either v or a neighbor of v. Choose
c sufficiently large to ensure this.

(B) (10 pts.) Using the above show that for a fixed number i the set of surfers that are given
shirts with number i form a valid surf team for G with probability at least 1− 1/n.

(C) (10 pts.) Using the above two parts argue that the surfout number of G is at least k.

2. (30 pts.) Random walk.
Consider a full binary tree of height h. You start from the root, and at every stage you flip a
coin and go the left subtree with probability half (if you get a head), and to the right subtree
with probability half (if you get a tail). You arrive to a leaf, and let’s assume you took k turns
to the left (and h− k turns to the right) traversing from the root to this leaf. Then the value
written in this leaf is αk, where α < 1 some parameter.
Let Xh be the random variable that is the returned value.

(A) (10 pts.) Prove that E[Xh] = (1+α
2 )

h
by stating a recursive formula on this value, and

solving this recurrence. Alternatively, you can prove this by a direct calculation.
(B) (10 pts.) Consider flipping a fair coin h times independently and interpret them as a

path in the above tree. Let E be the event that we get at most h/4 heads in these coin
flips. Argue that E happens if and only if Xh ≥ αh/4.
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(C) (10 pts.) Markov’s inequality states that for a positive random variable X we have that
Pr[X ≥ t] ≤ E[X/t]. Let Y be the number of heads when flipping a fair coin h times.
Using Markov’s inequality, (A) and (B) prove that

Pr
[
Out of h coin flips getting at most h/4 heads

]
≤
(
1 + α

2α1/4

)h

.

In particular, by picking the appropriate value of α, prove that

Pr
[
Out of h coin flips getting at most h/4 heads

]
≤ 0.88h.

What is your value of α?

3. (30 pts.) Conditional probabilities and expectations.
Assume there are two random variable X and Y , and you know the value of Y (say it is

y). The conditional probability of X given Y , written as Pr
[
X

∣∣∣Y ]
, is the probability of X

getting the value x, given that you know that Y = y. Formally, it is

Pr
[
X = x

∣∣∣Y = y
]
=

Pr[X = x ∩ Y = y]

Pr[Y = y]
.

The conditional expectation of X given Y , written as E
[
X

∣∣∣Y = y
]
is the expected value of

X if you know that Y = y. Formally, it is the function

f(y) = E
[
X

∣∣∣Y = y
]
=

∑
x∈Ω

xPr
[
X = x

∣∣∣Y = y
]
.

(A) (2 pts.) Prove that if X and Y are independent then Pr
[
X = x

∣∣∣Y = y
]
= Pr[X = x].

(B) (2 pts.) Let Xi be the number of elements in QuickSelect in the ith recursive call,

when starting with X0 = n elements. Prove that E
[
Xi

∣∣∣Xi−1

]
≤ (3/4)Xi−1.

(C) (2 pts.) Prove that for any discrete random variables X and Y it holds E[E[X|Y ]] =

E[X].
(D) (10 pts.) Prove that, in expectation, the ith recursive call made by QuickSelect has at

most (3/4)in elements in the sub-array it is being called on.
(E) (4 pts.) Let X be a random variable that can take on only non-negative values. Assume

that E[X] = µ, where µ > 0 is a real number (for example, µ might be 0.01). Prove that
Pr[X ≥ 1] ≤ µ.

(F) (10 pts.) Using (D) and (E) prove that with probability ≥ 1 − 1/n10 the depth of the
recursion of QuickSelect when executed on an array with n elements is bounded by
M = c lg n, where c is some sufficiently larger constant (figure out the value of c for which
your claim holds!).
(Hint: Consider the random variable which is the size of the subproblem that QuickSe-
lect handles if it reaches the problem in depth M , and 0 if QuickSelect does not reach
depth M in the recursion.)
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