
HW 6 (due Monday, at noon, March 11, 2013)
CS 473: Fundamental Algorithms, Spring 2013 Version: 1.1

Make sure that you write the solutions for the problems on separate sheets of paper. Write your
name and netid on each sheet.

Collaboration Policy: The homework can be worked in groups of up to 3 students each.

1. (30 pts.) The climbing vampires of Champaign.
Every year the vampires of Champaign elect their leader using a somewhat bizarre process.

They all go and travel to Peru and try to climb Siula Grande1. The rule of the game is that
they all start from the base camp and climb for 5 hours, and then they stop (it is a competition,
so each vampire probably reached a different location in the mountain). After that, the base
station start calling the vampires one after the other, and ask them for their location, and more
significantly how high are they in the mountain (the vampires have each a unique ID between
1 and n which they can use to call them). The vampire that is highest on the mountain is the
new leader.

To avoid a vacuum in leadership, the leader is being updated as the results come in.
Specifically, if after contacting the first i vampires the last vampire contacted is the highest,
then the base station sends n messages to all the vampires telling them that this vampire is
the new leader, where n is the number of vampires participating.
(A) (10 pts.) Given that the given vampires are v1, . . . , vn, describe a strategy that minimizes

the overall number of messages sent. How many messages does you scheme sends in the
worst case? If you decide on a randomized strategy, how many messages does your scheme
sends in expectation? The smaller the number of messages, the better. Prove your answer.

(B) (10 pts.) How many times does the leader changes in the worst case (and also in expec-
tation if your scheme is randomized) under your scheme (the fewer the better). Prove
your answer.

(C) (10 pts.) A new scheme was suggested that minimizes the number of messages sent:
Whenever a new leader is discovered, you announce it only to the vampires already
contacted. Describe a scheme that orders the vampires, such that the number of messages
sent is minimized. What is the number of messages sent by your scheme (either in the
worst case, and in expectation if your scheme is randomized). The fewer the better.

For this question, if you have two bounds x and y, then if x < y then x is preferable to y, even
if x holds only in expectation, and y is a worst case bound.

2. (40 pts.) Collapse and shrink.
(A) (5 pts.) Consider the procedure that receives as input an undirected weighted graph

G with n vertices and m edges, and weight x, and outputs the graph G<x that results
from removing all the edges in G that have weight larger than (or equal to) x. Describe
(shortly – no need for pseudo code) an algorithm for computing G<x. How fast is your
algorithm?
The graph G<x might not be connected – how would you compute its connected compo-
nents?

1See http://en.wikipedia.org/wiki/Touching_the_Void_%28film%29.

1

http://en.wikipedia.org/wiki/Touching_the_Void_%28film%29


(B) (5 pts.) Consider the procedure that receives as input an undirected weighted graph G,
and a partition V of the vertices of G into k disjoint sets V1, . . . , Vk. The meta graph
G(V) of G induces by V is a graph having k vertices, v1, . . . , vk, where vivj has an edge
if and only if, there is an edge between some vertex of Vi and some vertex of Vj . The
weight of such an edge vivj is the minimum weight of any edge between vertices in Vi and
vertices in Vj .
Describe an algorithm, as fast as possible, for computing the meta-graph G(V). You are
not allowed to use hashing for this question, but you can use that RadixSort works in
linear time (see wikipedia if you do not know RadixSort). How fast is your algorithm?

(C) (10 pts.) Consider the randomized algorithm that starts with a graph G with m edges
and n vertices. Initially it sets G0 = G. In the ith iteration, it checks if Gi−1 is a single
edge. If so, it stops and outputs the weight of this edge. Otherwise, it randomly choose
an edge ei ∈ E(Gi−1). It then computes the graph Hi =(Gi−1)<w(ei)

, as described above.
• If the graph Hi is connected then it sets Gi = Hi and continues to the next iteration.
• Otherwise, Hi is not connected, then it computes the connected components of Hi,
and their partition Vi of the vertices of Gi−1 (the vertices of each connected component
are a set in this partition). Next, it sets Gi to be the meta-graph Gi−1(Vi).

Let mi be the number of edges of the graph Gi. Prove that if you know the value of
mi−1, then E[mi] ≤ (7/8)mi−1 (a better constant is probably true). Conclude that

E[mi] ≤ (7/8)im.
(D) (15 pts.) What is the expected running time of the algorithm describe above? Prove

your answer. (The better your bound is, the better it is.)
(E) (5 pts.) What does the above algorithm computes, as far as the original graph G is

concerned?
3. (30 pts.) Selection revisited.

You are given two arrays of numbers X[1 . . . n] and Y [1 . . .m], where n is smaller than m.
(A) (20 pts.) Given a number k, and assuming both X and Y are sorted (say in increasing

order), describe an algorithm, as fast as possible, for finding the k smallest number in the
set X ∪ Y (assume all the numbers in X and Y are distinct).

(B) (10 pts.) Solve the same problem for the case that X is not sorted, but Y is sorted.

2


