CS 473: Fundamental Algorithms, Spring 2013

Discussion 11

April 2, 2013

11.1.

11.2.

DINNER SCHEDULING.

Consider a group of n people who are trying to figure out a dinner schedule over the next
n nights where each person needs to cook exactly once. Everyone has scheduling conflicts
with some of the nights, so deciding who should cook on which night becomes tricky.
Label the people {p1,...,p,} and the nights {d1, ..., d,}. For each person p;, there’s a set
of nights S; C {di,...,d,} when they are not able to cook.

A feasible dinner schedule is an assignment of each person to a different night, so that each
person cooks on exactly one night, there is someone cooking on each night, and if p; cooks
on night d;, then d; ¢ S;.

(A) Describe a bipartite graph G so that G has a perfect matching if and only if there is
a feasible dinner schedule for the group. What is the running time of your algorithm
in this case?

(B) After generating a schedule, they realize there is a problem. There are n — 2 of the
people that are assigned to different nights on which they are available: no problem
there. However, two people p; and p; have been assigned to cook on the same day
d;, while no one has been assigned to dj. Show that it’s possible to fix this bad
assignment and get a good assignment faster than just computing a solution from
scratch. Namely, decide in O(n?) time, given this bad solution, whether there exists
a feasible dinner schedule. How does the running time of your algorithm compares to

(A).

APPLICATIONS OF MIN-COST FLOwW

Consider a flow network with finite integer capacities on the edges. You have to send k

units of flow (k is an integer) from s to ¢ in this network, and the twist is that there are

costs associated with sending one unit of flow on edge. That is, for every edge e of G,

there is a cost w(e) associated with it. Formally, given a flow f(-) defined on the edges, the

cost of this flow is 3 ) w(e)f(e). The min-cost flow problem is the following: given
flow network G = (V| E), s,t € V and k find a minimum-cost flow from s to t of k units.

This problem can be solved efficiently (that is, in polynomial time). Moreover, one can

show that if capacities are integral then there exists an optimum solution where the flow

is integral. See how each of the following problems can be solved via this algorithm.

(A) Given a directed graph with positive integer costs on the edges and two vertices s and
t in the graph, describe how to compute the k edge disjoint paths from s to ¢, such
that the total cost of these paths is minimized.

(B) You are given a bipartite graph G with n vertices and m edges. Every edge has a cost
which is a positive integer number. Describe an algorithm that decides if this graph



has a perfect matching, and if so, outputs the cheapest such perfect matching. What
is the running time of your algorithm as a function of n, m, and W (here, W is the
maximum weight of an edge in the graph).

(C) Banana just released a new version of their iFifi — the first electronic gizmo that not

only can surf the web, but it is also dishwasher safe (not to mention that it comes in
two colors: black and blacker). Banana has k distribution centers C', ..., Cj in the
US, and you know for each one of them how many iFifi they currently have in stock
(i.e., t1,...,tx). You need to plan the distribution of the iFifis to the Banana stores.
You have a list of n stores Si,...,S,, and for each one of them there is a quota f; of
how many iFifis they need. For every distribution center C; and a store S}, you know
the distance d;; between them in miles (rounded up so it is an integer).
Sending a single iFifi from a distribution center C; to a store S; costs 10*4di]~ dollars.
Describe an algorithm, as efficient as possible, that computes the minimum cost way
to send all the required iFifis from the distribution centers to the stores. How fast is
your algorithm (for this question you can assume the US diameter is 3000 miles).

11.3. Maxmium WEIGHT SET OF NON-OVERLAPPING ARCS
Let Ay, Ay, ..., A, be a set of arcs on a unit circle. Each arc A; has a weight w; and is
specified as [s;, t;] where s; and t; are on the circle and the arc is anti-clockwise from s; to
t;. The goal is to find a maximum weight subset of the arcs that do not overlap. Describe
a way to solve this problem by reducing it to the algorithm you have seen previously for
finding a maximum weight subset of intervals that do not overlap (that we solved via
dynamic programming). Is the reduction a Turing reduction or a Karp reduction?



