
CS 473: Fundamental Algorithms, Spring 2013

Discussion 9

March 11, 2013

9.1. Matrix verification.
You are given three matrices A,B,C of positive integer numbers. The matrices are each of
size n × n. The claim is that AB = C. To verify this, your algorithm randomly chooses a
random vector r = (r1, r2, . . . , rn) ∈ {0, 1}n, and computes x = ABr by computing A(Br),
which can be done in O(n2) time (how?). It then computes y = Cr. The algorithm returns
that “AB = C” if x = y and “AB ̸= C” if x ̸= y. Prove, that given that AB ̸= C then the
probability that the algorithm returns “AB ̸= C” is at least half.

9.2. Lossy hashing.
Consider the problem where given m elements t1, . . . , tn, you are going to hash them in an
array of size n. Assume you are given a random hash function that is perfectly uniform; that
is, for every element you have uniform distribution of where the element might be mapped
to in the array. If two or more elements gets mapped to the same entry in the array, we
throw them away.
(A) What is the probability of an element to survive; that is, to be the only one mapped to

its cell in the array?
(B) A pair of elements collides if the two elements are being hashed to the same cell in

the array by h. What is the total expected number of colliding pairs?
(C) What is the probability that no pair of elements collide?

9.3. Find kth smallest number.
This question asks you to design and analyze a randomized incremental algorithm to select
the kth smallest element from a given set of n elements (from a universe with a linear order).
In an incremental algorithm, the input consists of a sequence of elements x1, x2, . . . , xn. After
any prefix x1, . . . , xi−1 has been considered, the algorithm has computed the kth smallest
element in x1, . . . , xi−1 (which is undefined if i ≤ k), or if appropriate, some other invariant
from which the kth smallest element could be determined. This invariant is updated as the
next element xi is considered.
Any incremental algorithm can be randomized by first randomly permuting the input se-
quence, with each permutation equally likely.
(A) Describe an incremental algorithm for computing the kth smallest element.
(B) How many comparisons does your algorithm perform in the worst case?
(C) What is the expected number (over all permutations) of comparisons performed by

the randomized version of your algorithm? (Hint: When considering xi, what is the
probability that xi is smaller than the kth smallest so far?) You should aim for a bound
of at most n+O(k log(n/k)). Revise (a) if necessary in order to achieve this.

[Notice, that if k is much smaller than n, then you algorithm performs n+o(n) comparisons.]

1



9.4. Sorting Random Numbers
Suppose we pick a real number xi at random (uniformly) from the unit interval, for i =
1, . . . , n. Our purpose is the following (which we are not going to achieve in this question).

Describe an algorithm with an expected linear running time that sorts x1, . . . , xn.

To make this question more interesting, assume that we are going to use some standard
sorting algorithm instead (say merge sort), which compares the numbers directly. The binary
representation of each xi can be generated as a potentially infinite series of bits that are the
outcome of unbiased coin flips. The idea is to generate only as many bits in this sequence as
is necessary for resolving comparisons between different numbers as we sort them. Suppose
we have only generated some prefixes of the binary representations of the numbers. Now,
when comparing two numbers xi and xj, if their current partial binary representation can
resolve the comparison, then we are done. Otherwise, the have the same partial binary
representations (upto the length of the shorter of the two) and we keep generating more bits
for each until they first differ.
(A) Compute a tight upper bound on the expected number of coin flips or random bits

needed for a single comparison.
(B) Generating bits one at a time like this is probably a bad idea in practice. Give a

more practical scheme that generates the numbers in advance, using a small number of
random bits, given an upper bound n on the input size. Describe a scheme that works
correctly with probability ≥ 1− n−c, where c is a prespecified constant.

9.5. What happens on Uranus stays on Uranus.
There are currently k Uranusians alive on Uranus (they look a lot like cucumbers, but with
legs). Each month exactly one of the Uranusians undergoes a critical event. Either it dies
with probability p or it splits into two new Uranusians with probability p. With probability
1− 2p nothing happens.
(A) Let Xi be the size of the population of the Uranus population after the ith month. What

is E[Xi]? Here, you need to only provide a good upper bound on V[Xi], as computing
it exactly seems hard.

(B) Let Pi be the probability that the population of Uranus is non-zero after i months.
Prove that lim∞

i=0 Pi = 0. (There is a short and elegant argument showing that, but it
is in fact not easy to see.)

(C) (Harder.) Let X be the number of months till the population of Uranus is extinct.
Prove that E[X] is unbounded.

This is a very simple example of a Galton-Watson process. From wikipedia:

The Galton-Watson process is a branching stochastic process arising from Francis
Galton’s statistical investigation of the extinction of family names.

There was concern amongst the Victorians that aristocratic surnames were be-
coming extinct. Galton originally posed the question regarding the probability of
such an event.

2


