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Part I

Maximum Weighted Independent Set in Trees
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Maximum Weight Independent Set Problem

Input Graph G = (V,E) and weights w(v) ≥ 0 for each
v ∈ V

Goal Find maximum weight independent set in G
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Maximum weight independent set in above graph: {B,D}
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Maximum Weight Independent Set in a Tree

Input Tree T = (V,E) and weights w(v) ≥ 0 for each v ∈ V

Goal Find maximum weight independent set in T
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Maximum weight independent set in above tree: ??
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Towards a Recursive Solution

For an arbitrary graph G:

Number vertices as v1, v2, . . . , vn

Find recursively optimum solutions without vn (recurse on
G− vn) and with vn (recurse on G− vn−N(vn) & include vn).

Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for vn is root r of T?
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Towards a Recursive Solution

Natural candidate for vn is root r of T? Let O be an optimum
solution to the whole problem.

Case r 6∈ O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r ∈ O : None of the children of r can be in O. O − {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T hanging at nodes in T.
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A Recursive Solution

T(u): subtree of T hanging at node u
OPT(u): max weighted independent set value in T(u)

OPT(u) = max

{∑
v child of u OPT(v),

w(u) +
∑

v grandchild of u OPT(v)
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Iterative Algorithm

Compute OPT(u) bottom up. To evaluate OPT(u) need to
have computed values of all children and grandchildren of u

What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.
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Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Iterative Algorithm

MIS-Tree(T):

Let v1, v2, . . . , vn be a post-order traversal of nodes of T

for i = 1 to n do

M[vi] = max
(∑

vj child of vi
M[vj], w(vi) +

∑
vj grandchild of vi

M[vj]
)

return M[vn] (* Note: vn is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Naive bound: O(n2) since each M[vi] evaluation may take
O(n) time and there are n evaluations.

Better bound: O(n). A value M[vj] is accessed only by its
parent and grand parent.

Sariel (UIUC) CS473 9 Spring 2011 9 / 37



Example
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Part II

DAGs and Dynamic Programming
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Recursion and DAGs

Observation
Let A be a recursive algorithm for problem Π. For each instance I of
Π there is an associated DAG G(I).

Create directed graph G(I) as follows

For each sub-problem in the execution of A on I create a node

If sub-problem v depends on or recursively calls sub-problem u
add directed edge (u, v) to graph

G(I) is a DAG. Why? If G(I) has a cycle then A will not
terminate on I
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Iterative Algorithm in Dynamic Programming and

DAGs

Observation
An iterative algorithm B obtained from a recursive algorithm A for a
problem Π does the following: for each instance I of Π, it computes
a topological sort of G(I) and evaluates sub-problems according to
the topological ordering.

Sometimes the DAG G(I) can be obtained directly without
thinking about the recursive algorithm A

In some cases (not all) the computation of an optimal solution
reduces to a shortest/longest path in DAG G(I)

Topological sort based shortest/longest path computation is
dynamic programming!
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Weighted Interval Scheduling via Longest Path in a

DAG

Given intervals, create a DAG as follows

one node for each interval plus a dummy source node for interval
0 plus a dummy sink node t.

for each interval i add edge (p(i), i) of length/weight vi

for each interval i add edge (i, t) of length 0
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Example
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Relating Optimum Solution

Given interval problem instance I let G(I) denote the DAG
constructed as described.

Claim: Optimum solution to weighted interval scheduling instance I
is given by longest path from s to t in G(I).

Assuming claim is true,

If I has n intervals, DAG G(I) has n + 2 nodes and O(n)
edges. Creating G(I) takes O(n log n) time: to find p(i) for
each i. How?

Longest path can be computed in O(n) time — recall
O(m + n) algorithm for shortest/longest paths in DAGs.
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DAG for Longest Increasing Sequence

Given sequence a1, a2, . . . , an create DAG as follows:

add sentinel a0 to sequence where a0 is less than smallest
element in sequence

for each i there is a node vi

if i < j and ai < aj add an edge (vi, vj)

find longest path from v0

6 3 5 2 7 8 10
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Part III

Edit Distance and Sequence Alignment
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Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a
spell checker suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x2 . . . xn and y1y2 . . . ym what is a
distance between them?

Edit Distance: minimum number of “edits” to transform x into y.
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Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY
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Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i, j) such that each index
appears at most once, and there is no “crossing”: i < i′ and i is
matched to j implies i′ is matched to j′ > j. In the above example,
this is M = {(1, 1), (2, 2), (3, 3), (4, 5)}. Cost of an alignment is
the number of mismatched columns plus number of unmatched
indices in both strings.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Applications

Spell-checkers and Dictionaries

Unix diff

DNA sequence alignment . . . but, we need a new metric
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Similarity Metric

Definition
For two strings X and Y, the cost of alignment M is

[Gap penalty] For each gap in the alignment, we incur a cost δ

[Mismatch cost] For each pair p and q that have been matched
in M, we incur cost αpq; typically αpp = 0

Edit distance is special case when δ = αpq = 1

Sariel (UIUC) CS473 24 Spring 2011 24 / 37
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An Example

Example

o c u r r a n c e
o c c u r r e n c e Cost = δ + αae

Alternative:

o c u r r a n c e
o c c u r r e n c e Cost = 3δ

Or a really stupid solution (delete string, insert other string):

o c u r r a n c e
o c c u r r e n c e

Cost = 19δ.
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Sequence Alignment

Input Given two words X and Y, and gap penalty δ and
mismatch costs αpq

Goal Find alignment of minimum cost
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Edit distance
Basic observation

Let X = αx and Y = βy
α, β: stings.
x and y single characters.
Think about optimal edit distance between X and Y as alignment,
and consider last column of alignment of the two strings:

α x
β y

or
α x
βy

or
αx
β y

Observation
Prefixes must have optimal alignment!
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Problem Structure

Observation
Let X = x1x2 · · · xm and Y = y1y2 · · · yn. If (m, n) are not
matched then either the m’th position of X remains unmatched or
the n’th position of Y remains unmatched.

Case xm and yn are matched.

Pay mismatch cost αxmyn plus cost of aligning strings
x1 · · · xm−1 and y1 · · · yn−1

Case xm is unmatched.

Pay gap penalty plus cost of aligning x1 · · · xm−1 and y1 · · · yn

Case yn is unmatched.

Pay gap penalty plus cost of aligning x1 · · · xm and y1 · · · yn−1
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Subproblems and Recurrence

Optimal Costs

Let Opt(i, j) be optimal cost of aligning x1 · · · xi and y1 · · · yj. Then

Opt(i, j) = min


αxiyj

+ Opt(i− 1, j− 1),

δ + Opt(i− 1, j),

δ + Opt(i, j− 1)

Base Cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
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Dynamic Programming Solution

for all i do M[i, 0] = iδ
for all j do M[0, j] = jδ
for i = 1 to m do

for j = 1 to n do

M[i, j] = min


αxiyj + M[i− 1, j− 1],

δ + M[i− 1, j],

δ + M[i, j− 1]

Analysis

Running time is O(mn)

Space used is O(mn)
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Matrix and DAG of Computation

.

.

.

.
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.
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.

.

.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

. . .
. . .

i, j

δ

δ

αxiyj

m, n

0, 0

Figure: Iterative algorithm in previous slide computes values in row order.
Optimal value is a shortest path from (0, 0) to (m, n) in DAG.
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Sequence Alignment in Practice

Typically the DNA sequences that are aligned are about 105

letters long!

So about 1010 operations and 1010 bytes needed

The killer is the 10GB storage

Can we reduce space requirements?
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Optimizing Space

Recall

M(i, j) = min


αxiyj

+ M(i− 1, j− 1),

δ + M(i− 1, j),

δ + M(i, j− 1)

Entries in jth column only depend on (j− 1)’st column and
earlier entries in jth column

Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j− 1) and N(i, 1) stores M(i, j)

Sariel (UIUC) CS473 33 Spring 2011 33 / 37



Optimizing Space

Recall

M(i, j) = min


αxiyj

+ M(i− 1, j− 1),

δ + M(i− 1, j),

δ + M(i, j− 1)

Entries in jth column only depend on (j− 1)’st column and
earlier entries in jth column

Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j− 1) and N(i, 1) stores M(i, j)

Sariel (UIUC) CS473 33 Spring 2011 33 / 37



Optimizing Space

Recall

M(i, j) = min


αxiyj

+ M(i− 1, j− 1),

δ + M(i− 1, j),

δ + M(i, j− 1)

Entries in jth column only depend on (j− 1)’st column and
earlier entries in jth column

Only store the current column and the previous column reusing
space; N(i, 0) stores M(i, j− 1) and N(i, 1) stores M(i, j)

Sariel (UIUC) CS473 33 Spring 2011 33 / 37



Computing in column order to save space

.
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· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

. . .
. . .

i, j

δ

δ

αxiyj

m, n

0, 0

Figure: M(i, j) only depends on previous column values. Keep only two
columns and compute in column order.
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Space Efficient Algorithm

for all i do N[i, 0] = iδ
for j = 1 to n do

N[0, 1] = jδ (* corresponds to M(0, j) *)

for i = 1 to m do

N[i, 1] = min


αxiyj + N[i− 1, 0]

δ + N[i− 1, 1]

δ + N[i, 0]
for i = 1 to m doCopy N[i, 0] = N[i, 1]

Analysis

Running time is O(mn) and space used is O(2m) = O(m)
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Analyzing Space Efficiency

From the m× n matrix M we can construct the actual
alignment (exercise)

Matrix N computes cost of optimal alignment but no way to
construct the actual alignment

Space efficient computation of alignment? More complicated
algorithm — see text book.
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Takeaway Points

Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.
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Notes
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