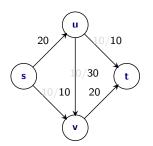
CS 473: Fundamental Algorithms, Spring 2011

Network Flow Algorithms

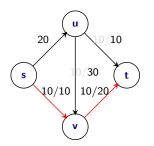
Lecture 17 March 29, 2011

Part I

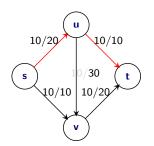
Algorithm(s) for Maximum Flow



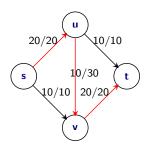
- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.



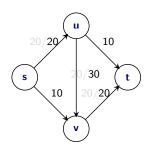
- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

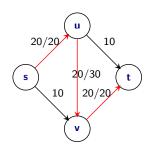


- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.



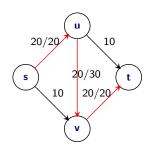
- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v})



- Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

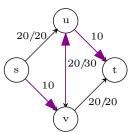
Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (\mathbf{u}, \mathbf{v})



- Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to "push-back" flow along edge (u, v)



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (u, v)

Residual Graph

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- \bullet V' = V
- Forward Edges: For each edge $e \in E$ with f(e) < c(e), we $e \in E'$ with capacity c(e) f(e)
- Backward Edges: For each edge $e=(u,v)\in E$ with f(e)>0, we $(v,u)\in E'$ with capacity f(e)

Residual Graph

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- \bullet V' = V
- Forward Edges: For each edge $e \in E$ with f(e) < c(e), we $e \in E'$ with capacity c(e) f(e)
- Backward Edges: For each edge $e = (u, v) \in E$ with f(e) > 0, we $(v, u) \in E'$ with capacity f(e)

Residual Graph

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $\bullet V' = V$
- Forward Edges: For each edge $e \in E$ with f(e) < c(e), we $e \in E'$ with capacity c(e) f(e)
- Backward Edges: For each edge $e = (u, v) \in E$ with f(e) > 0, we $(v, u) \in E'$ with capacity f(e)

Residual Graph Example

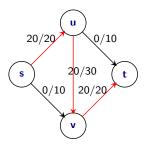


Figure: Flow in red edges

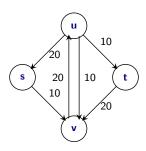


Figure: Residual Graph

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

If the flow from s to t is 0

MaxFlow(G, s, t):

return 0

```
Find any flow f with v(f) > 0 in G
Recursively compute a maximum flow f' in G_f
Output the flow f + f'
While there is a flow f' in G_f with v(f')>0 do
   f = f + f'
```

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\label{eq:maxFlow} \begin{array}{l} \text{MaxFlow}(G,s,t): \\ \text{If the flow from $s$ to $t$ is $0$} \\ \text{return $0$} \\ \text{Find any flow $f$ with $v(f)>0$ in $G$} \\ \text{Recursively compute a maximum flow $f'$ in $G_f$} \\ \text{Output the flow $f+f'$} \end{array}
```

Iterative algorithm for finding a maximum flow:

```
\begin{array}{l} \text{MaxFlow}(G,s,t): \\ \text{Start with flow } f \text{ that is } 0 \text{ on all edges} \\ \text{While there is a flow } f' \text{ in } G_f \text{ with } \nu(f') > 0 \text{ do} \\ f = f + f' \\ \text{Update } G_f \\ \text{endWhile} \\ \text{Output } f \end{array}
```

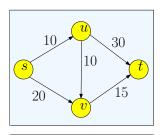
Ford-Fulkerson Algorithm

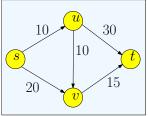
```
algFordFulkerson
    for every edge e, f(e) = 0
    G_f is residual graph of G with respect to f
    while G<sub>f</sub> has a simple s-t path do
        let P be simple s-t path in G_f
        f = augment(f, P)
        Construct new residual graph Gf
        else (* (u, v) is a backward edge *)
             let e = (v, u) (* (v, u) is in G *)
```

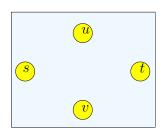
Ford-Fulkerson Algorithm

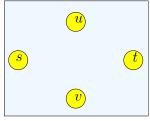
```
algFordFulkerson
    for every edge e, f(e) = 0
    G_f is residual graph of G with respect to f
    while G<sub>f</sub> has a simple s-t path do
        let P be simple s-t path in G_f
        f = augment(f, P)
        Construct new residual graph Gf
augment(f,P)
    let b be bottleneck capacity,
        i.e., min capacity of edges in P (in G_f)
    for each edge (u, v) in P do
        if e = (u, v) is a forward edge then
            f(e) = f(e) + b
        else (* (u, v) is a backward edge *)
             let e = (v, u) (* (v, u) is in G *)
            f(e) = f(e) - b
    return f
```

Example

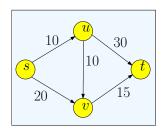


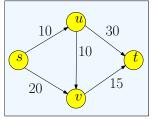


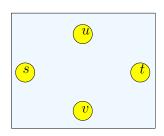


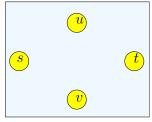


Example continued

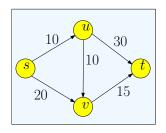


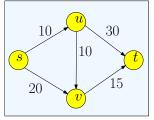


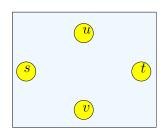


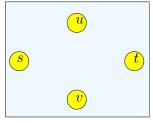


Example continued

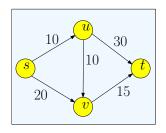


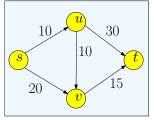


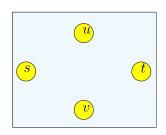


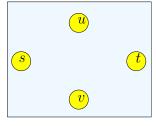


Example continued









Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide). □

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide). □

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- Conservation constraint: Let \mathbf{v} be an internal node. Let $\mathbf{e_1}, \mathbf{e_2}$ be edges of \mathbf{P} incident to \mathbf{v} . Four cases based on whether $\mathbf{e_1}, \mathbf{e_2}$ are forward or backward edges. Check cases (see fig next slide).

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let **b** be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide). □

Lemma

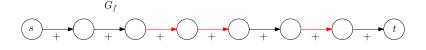
If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that $\mathbf{f'}$ is a flow. Let \mathbf{b} be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide). □

Properties about Augmentation: Conservation Constraint



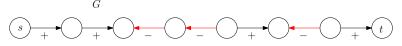


Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Properties about Augmentation: Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values f(e) and the residual capacities in G_f are integers

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in (j+1)st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.

Progress in Ford-Fulkerson

Proposition

Let **f** be a flow and **f**' be flow after one augmentation. Then $\mathbf{v}(\mathbf{f}) < \mathbf{v}(\mathbf{f}')$.

Proof.

Let ${\bf P}$ be an augmenting path, i.e., ${\bf P}$ is a simple ${\bf s}\text{-}{\bf t}$ path in residual graph

- First edge e in P must leave s
- Original network G has no incoming edges to s; hence e is a forward edge
- P is simple and so never returns to s
- Thus, value of flow increases by the flow on edge e

Termination Proof

Theorem

Let **C** be the minimum cut value; in particular

 $C \leq \sum_{e \ out \ of \ s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least ${\bf 1}$ after each augmentation. Maximum value of flow is at most ${\bf C}$.

Running time

- Number of iterations < C
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is O(n + m)
- Running time is O(C(n + m)) (or O(mC)).

Sariel (UIUC)

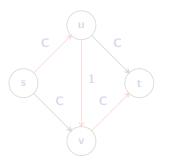
CS473

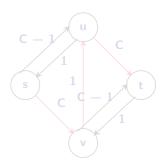
18

Spring 2011

Efficiency of Ford-Fulkerson

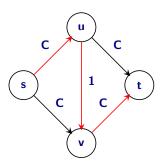
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

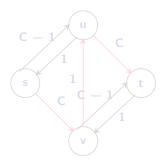




Ford-Fulkerson can take $\Omega(C)$ iterations.

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

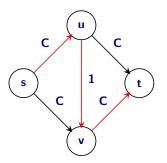


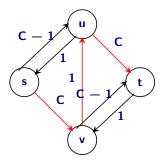


Ford-Fulkerson can take $\Omega(C)$ iterations.

Sariel (UIUC) CS473 19 Spring 2011 19 / 33

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?





Ford-Fulkerson can take $\Omega(C)$ iterations.

Sariel (UIUC) CS473 19 Spring 2011 19 / 33

Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum **s-t** flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Sariel (UIUC) CS473 20 Spring 2011 20 / 33

Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum **s-t** flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Sariel (UIUC) CS473 20 Spring 2011 20 / 33

Recalling Cuts

Definition

Given a flow network an **s-t** cut is a set of edges $\mathbf{E}' \subset \mathbf{E}$ such that removing \mathbf{E}' disconnects **s** from **t**: in other words there is no directed $\mathbf{s} \to \mathbf{t}$ path in $\mathbf{E} - \mathbf{E}'$. Capacity of cut \mathbf{E}' is $\sum_{\mathbf{e} \in \mathbf{E}'} \mathbf{c}(\mathbf{e})$.

Let $A \subset V$ such that

- \bullet s \in A, t $\not\in$ A
- B = V A and hence $t \in B$

Define
$$(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$$

Claim

(A, B) is an s-t cut.

Recall: Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let **A** be all vertices reachable from **s** in G_f ; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{G}$ with $\mathbf{u} \in \mathbf{A}$ and $\mathbf{v} \in \mathbf{B}$, then $\mathbf{f}(\mathbf{e}) = \mathbf{c}(\mathbf{e})$ (saturated edge) because otherwise \mathbf{v} is reachable from \mathbf{s} in $\mathbf{G}_{\mathbf{f}}$

Sariel (UIUC) CS473 22 Spring 2011 22 / 33

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f

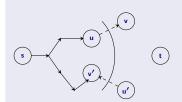
Sariel (UIUC) CS473 22 Spring 2011 22 / 33

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$



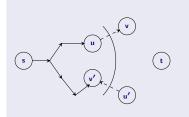
- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $\mathbf{e} = (\mathbf{u}, \mathbf{v}) \in \mathbf{G}$ with $\mathbf{u} \in \mathbf{A}$ and $\mathbf{v} \in \mathbf{B}$, then $\mathbf{f}(\mathbf{e}) = \mathbf{c}(\mathbf{e})$ (saturated edge) because otherwise \mathbf{v} is reachable from \mathbf{s} in $\mathbf{G}_{\mathbf{f}}$

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$

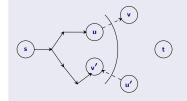


- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f

- (ロ) (部) (注) (注)

Lemma Proof Continued

Proof.



- If $\mathbf{e} = (\mathbf{u}', \mathbf{v}') \in \mathbf{G}$ with $\mathbf{u}' \in \mathbf{B}$ and $\mathbf{v}' \in \mathbf{A}$, then $\mathbf{f}(\mathbf{e}) = \mathbf{0}$ because otherwise \mathbf{u}' is reachable from \mathbf{s} in $\mathbf{G}_{\mathbf{f}}$
- Thus,

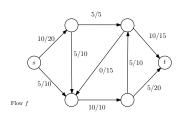
$$v(f) = f^{out}(A) - f^{in}(A)$$

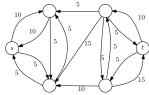
= $f^{out}(A) - 0$
= $c(A, B) - 0$
= $c(A, B)$

←□ → ←□ → ← □ → ←

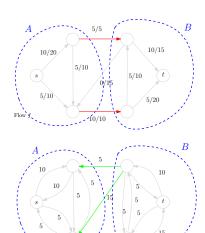
Sariel (UIUC) CS473 23 Spring 2011 23 / 33

Example





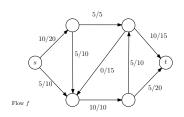
Residual graph G_f : no s-t path

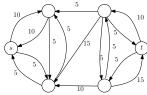


Sariel (UIUC) CS473 24 Spring 2011 24 / 33

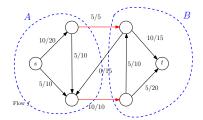
A is reachable set from s in G_f

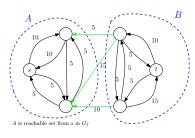
Example





Residual graph G_f : no s-t path





Sariel (UIUC) CS473 24 Spring 2011 24 / 33

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \le c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-T cut (A^*, B^*)
- Hence, **f*** is maximum

25 / 33

Spring 2011

Sariel (UIUC) CS473 25

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network **G**, the value of a maximum **s-t** flow is equal to the capacity of the minimum **s-t** cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

Max-Flow Min-Cut Theorem and Integrality of Flows

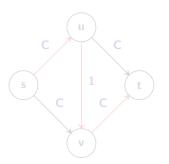
Theorem

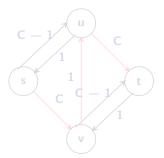
For any network **G** with integer capacities, there is a maximum **s-t** flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

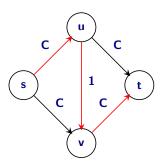
Running time = O(mC) is not polynomial. Can the upper bound be achieved?

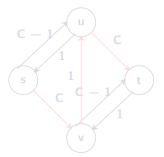




Sariel (UIUC) CS473 28 Spring 2011 28 / 33

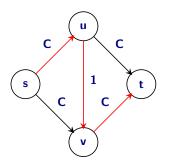
Running time = O(mC) is not polynomial. Can the upper bound be achieved?

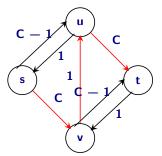




Sariel (UIUC) CS473 28 Spring 2011 28 / 33

Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Sariel (UIUC) CS473 28 Spring 2011 28 / 33

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Sariel (UIUC) CS473 29 Spring 2011 29 / 33

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Sariel (UIUC) CS473 29 Spring 2011 29 / 33

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know △ the bottleneck capacity
 - ullet Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest △
 - Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow.
 This leads to an O(m² log² C) time algorithm.

Sariel (UIUC) CS473 30 Spring 2011 30 / 33

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know △ the bottleneck capacity
 - ullet Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest △
 - Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow.
 This leads to an O(m² log² C) time algorithm.

Sariel (UIUC) CS473 30 Spring 2011 30 / 33

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson
- How do we find path with largest bottleneck capacity?
 - Assume we know △ the bottleneck capacity
 - ullet Remove all edges with residual capacity $\leq \Delta$
 - Check if there is a path from s to t
 - Do binary search to find largest Δ
 - Running time: O(m log C)
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow.
 This leads to an O(m² log² C) time algorithm.

Sariel (UIUC) CS473 30 Spring 2011 30 / 33

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm's running time is O(m log m).
- Different algorithm that also leads to O(m log m) time algorithm by adapting Prim's algorithm.

Sariel (UIUC) CS473 31 Spring 2011 31 / 33

Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a O(m²n) algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an s-t path).
- Further improvements can yield algorithms running in O(mn log n), or O(n³).

Sariel (UIUC) CS473 32 Spring 2011 32 / 33

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- ullet Obtain the residual graph G_f
- ullet Find the nodes ullet reachable from ullet in ullet ullet
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given **G** and a flow **f** there is a linear time algorithm to check if **f** is a maximum flow and if it is, outputs a minimum cut. How?

Sariel (UIUC) CS473 33 Spring 2011 33 / 33

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut? Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- ullet Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

Sariel (UIUC) CS473 33 Spring 2011 33 / 33

Sariel (UIUC) CS473 34 Spring 2011 34 / 3

Sariel (UIUC) CS473 35 Spring 2011 35 / 3

Sariel (UIUC) CS473 36 Spring 2011 36 / 3

Sariel (UIUC) CS473 37 Spring 2011 37 / 3