CS 473: Fundamental Algorithms, Spring 2011

Hashing

Lecture 15 March 15, 2011

Part I

Hash Tables

Dictionary Data Structure

- ullet A universe ${\cal U}$ of keys that have a total order: numbers, strings, etc.
- ullet Data structure to store a subset $ullet \subseteq \mathcal{U}$
- Operations:
 - Search/lookup: given $x \in \mathcal{U}$ is $x \in S$?
 - Insert: given $x \notin S$ add x to S.
 - Delete: given x ∈ S delete x from S
- **Static** structure: **S** given in advance or changes very infrequently, main operations are lookups.
- Dynamic structure: S changes rapidly so inserts and deletes as important as lookups.

Dictionary Data Structures

Common solutions:

- Static:
 - Store S as a sorted array
 - Lookup: binary search in O(log |S|) time (comparisons)
- Dynamic:
 - Store S in a balanced binary search tree
 - Lookup, Insert, Delete in O(log |S|) time (comparisons)

Dictionary Data Structures

Question: "Should Tables be Sorted?" (also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

- ullet Universe ${oldsymbol{\mathcal{U}}}$ may not be (naturally) totally ordered
- Keys correspond to large objects (images, graphs etc) for which comparisons are very expensive
- Want to improve "average" performance of lookups to O(1)
 even at cost of extra space or errors with small probability:
 many applications for fast lookups in networking, security, etc.

Dictionary Data Structures

Question: "Should Tables be Sorted?" (also title of famous paper by Turing award winner Andy Yao)

Hashing is a widely used & powerful technique for dictionaries.

Motivation:

- ullet Universe ${oldsymbol{\mathcal{U}}}$ may not be (naturally) totally ordered
- Keys correspond to large objects (images, graphs etc) for which comparisons are very expensive
- Want to improve "average" performance of lookups to O(1)
 even at cost of extra space or errors with small probability:
 many applications for fast lookups in networking, security, etc.

Hash Table data structure:

- A (hash) table/array T of size m (the table size)
- A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T

- Each element $x \in S$ hashes to a distinct slot in T. Store x in
- Lookup: given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

6 / 31

Sariel (UIUC) CS473 6 Spring 2011

Hash Table data structure:

- A (hash) table/array **T** of size **m** (the table size)
- ullet A hash function $oldsymbol{\mathsf{h}}: \mathcal{U} o \{0, \dots, \mathsf{m}-1\}$
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- Lookup: given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

Collisions unavoidable. Several different techniques to handle them.

Hash Table data structure:

- A (hash) table/array **T** of size **m** (the table size)
- ullet A hash function $oldsymbol{\mathsf{h}}: \mathcal{U} o \{0, \dots, \mathsf{m}-1\}$
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- Lookup: given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

Collisions unavoidable. Several different techniques to handle them.

Hash Table data structure:

- A (hash) table/array **T** of size **m** (the table size)
- ullet A hash function $oldsymbol{\mathsf{h}}: \mathcal{U} o \{0, \dots, \mathsf{m}-1\}$
- Item $x \in \mathcal{U}$ hashes to slot h(x) in T

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element x ∈ S hashes to a distinct slot in T. Store x in slot h(x)
- Lookup: given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

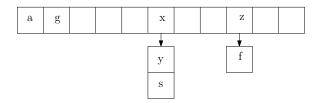
Collisions unavoidable. Several different techniques to handle them.

Handling Collisions: Chaining

Collision: h(x) = h(y) for some $x \neq y$.

Chaining to handle collisions:

- For each slot i store all items hashed to slot i in a linked list.
 T[i] points to the linked list
- Lookup: to find if $y \in \mathcal{U}$ is in T, check the linked list at T[h(y)]. Time proportion to size of linked list.



Handling Collisions

Several other techniques:

- Open addressing
- . . .
- Cuckoo hashing

Does hashing give O(1) time per operation for dictionaries?

Questions:

- Complexity of evaluating h on a given element?
- ullet Relative sizes of the universe ${\cal U}$ and the set to be stored ${\sf S}$.
- Size of table relative to size of S.
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?

Does hashing give O(1) time per operation for dictionaries?

Questions:

- Complexity of evaluating **h** on a given element?
- Relative sizes of the universe \mathcal{U} and the set to be stored S.
- Size of table relative to size of S.
- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?

- Complexity of evaluating **h** on a given element? Should be small.
- Relative sizes of the universe $\mathcal U$ and the set to be stored $\mathbf S$: typically $|\mathcal U|\gg |\mathbf S|$.
- Size of table relative to size of **S**. The **load factor** of **T** is the ratio \mathbf{n}/\mathbf{t} where $\mathbf{n} = |\mathbf{S}|$ and $\mathbf{m} = |\mathbf{T}|$. Typically \mathbf{n}/\mathbf{t} is a small constant smaller than **1**.
 - Also known as the **fill factor**.

Main and interrelated questions:

- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- Complexity of evaluating **h** on a given element? Should be small.
- Relative sizes of the universe \mathcal{U} and the set to be stored S: typically $|\mathcal{U}| \gg |S|$.
- Size of table relative to size of **S**. The **load factor** of **T** is the ratio $\mathbf{n/t}$ where $\mathbf{n} = |\mathbf{S}|$ and $\mathbf{m} = |\mathbf{T}|$. Typically $\mathbf{n/t}$ is a small constant smaller than **1**.
 - Also known as the **fill factor**.

Main and interrelated questions:

- Worst-case vs average-case vs randomized (expected) time?
- How do we choose h?

Single hash function

- *U*: universe (very large).
- Assume $N = |\mathcal{U}| \gg m$ where m is size of table T. In particular assume $N \ge m^2$ (very conservative).
- ullet Fix hash function $h:\mathcal{U} o \{0,\ldots,m-1\}$.
- N items hashed to m slots. By pigeon hole principle there is some $i \in \{0, \ldots, m-1\}$ such that $N/m \ge m$ elements of $\mathcal U$ get hashed to i!
- Implies that there is a set $S \subseteq \mathcal{U}$ where |S| = m such that all of S hashes to same slot!

Lesson: For every hash function there is a very bad set!

Single hash function

- *U*: universe (very large).
- Assume $N = |\mathcal{U}| \gg m$ where m is size of table T. In particular assume $N \geq m^2$ (very conservative).
- ullet Fix hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- N items hashed to m slots. By pigeon hole principle there is some $i \in \{0, \ldots, m-1\}$ such that $N/m \ge m$ elements of $\mathcal U$ get hashed to i!
- Implies that there is a set $S \subseteq \mathcal{U}$ where |S| = m such that all of S hashes to same slot!

Lesson: For every hash function there is a very bad set!

- Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
- Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|

- \mathcal{H} is a family of hash functions: each function $h \in \mathcal{H}$ should be efficient to evaluate (that is, to compute h(x))
- h is chosen randomly from \mathcal{H} (typically uniformly at random). Implicitly assumes that \mathcal{H} allows an efficient sampling.
- Randomized guarantee: should have the property that for any fixed set $\mathbf{S} \subseteq \mathcal{U}$ of size \mathbf{m} the expected number of collisions for a function chosen from \mathcal{H} should be "small". Here the expectation is over the randomness in choice of \mathbf{h} .

- Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
- Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|

- \mathcal{H} is a family of hash functions: each function $\mathbf{h} \in \mathcal{H}$ should be efficient to evaluate (that is, to compute $\mathbf{h}(\mathbf{x})$)
- **h** is chosen *randomly* from \mathcal{H} (typically uniformly at random). Implicitly assumes that \mathcal{H} allows an efficient sampling.
- Randomized guarantee: should have the property that for any fixed set $\mathbf{S} \subseteq \mathcal{U}$ of size \mathbf{m} the expected number of collisions for a function chosen from \mathcal{H} should be "small". Here the expectation is over the randomness in choice of \mathbf{h} .

Question: Why not let $\mathcal H$ be the set of *all* functions from $\mathcal U$ to $\{0,1,\ldots,m-1\}$?

• Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H} ?

ullet Yes... But what it means for ${\cal H}$ to be good and compact.

Question: Why not let ${\mathcal H}$ be the set of *all* functions from ${\mathcal U}$ to $\{0,1,\ldots, {\mathsf m}-1\}$?

• Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H} ?

ullet Yes... But what it means for ${\cal H}$ to be good and compact.

Question: Why not let ${\mathcal H}$ be the set of *all* functions from ${\mathcal U}$ to $\{0,1,\ldots, {\mathsf m}-1\}$?

• Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H} ?

ullet Yes... But what it means for ${\cal H}$ to be good and compact.

Question: Why not let ${\mathcal H}$ be the set of *all* functions from ${\mathcal U}$ to $\{0,1,\ldots, {\mathsf m}-1\}$?

• Too many functions! A random function has high complexity!

Question: Are there good and compact families \mathcal{H} ?

ullet Yes... But what it means for ${\cal H}$ to be good and compact.

Question: What are good properties of ${\cal H}$ in distributing data?

- Consider any element x ∈ U. Then if h ∈ H is picked randomly then x should go into a random slot in T. In other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.
- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family hash function \mathcal{H} is **2-universal** if for all distinct $x, y \in \mathcal{U}$, $\Pr[h(x) = h(y)] = 1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family hash function $\mathcal H$ is 2-universal if for all distinct $x,y\in\mathcal U$, $\Pr[h(x)=h(y)]=1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family hash function $\mathcal H$ is 2-universal if for all distinct $x,y\in\mathcal U$, $\Pr[h(x)=h(y)]=1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family hash function \mathcal{H} is 2-universal if for all distinct $x, y \in \mathcal{U}$, $\Pr[h(x) = h(y)] = 1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Question: What are good properties of \mathcal{H} in distributing data?

- Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).
- Second property is stronger than the first and the crucial issue.

Definition

A family hash function \mathcal{H} is 2-universal if for all distinct $x, y \in \mathcal{U}$, $\Pr[h(x) = h(y)] = 1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

- T is hash table of size m.
- $S \subset \mathcal{U}$ is a *fixed* set of size **m**.
- **h** is chosen randomly from a uniform hash family \mathcal{H} .
- x is a *fixed* element of \mathcal{U} . Assume for simplicity that $x \notin S$.

Question: What is the *expected* time to look up **x** in **T** using **h** assuming chaining used to resolve collisions?

Question: What is the *expected* time to look up **x** in **T** using **h** assuming chaining used to resolve collisions?

- The time to look up x is the size of the list at T[h(x)]: same as the number of elements in S that collide with x under h.
- Let $\ell(x)$ be this number. We want $E[\ell(x)]$
- For $y \in S$ let A_y be the even that x, y collide and D_y be the corresponding indicator variable.

Continued...

$$\ell(x) = \sum_{y \in S} D_y$$

$$\Rightarrow \mathsf{E}[\ell(x)] = \sum_{y \in S} \mathsf{E}[D_y] \quad \text{linearity of expectation}$$

$$= \sum_{y \in S} \mathsf{Pr}[h(x) = h(y)]$$

$$= \sum_{y \in S} \frac{1}{m} \quad \text{since } \mathcal{H} \text{ is a uniform hash family}$$

$$= |S|/m \le 1$$

Question: What is the *expected* time to look up **x** in **T** using **h** assuming chaining used to resolve collisions?

Answer: 0(1)!

Comments

- O(1) expected time also holds for insertion.
- Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- Worst-case look up time can be large! How large? $\Omega(\log n / \log \log n)$.

Question: What is the *expected* time to look up **x** in **T** using **h** assuming chaining used to resolve collisions?

Answer: 0(1)!

Comments:

- O(1) expected time also holds for insertion.
- Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- Worst-case look up time can be large! How large? $\Omega(\log n / \log \log n)$.

Rehashing, amortization and...

... making the hash table dynamic

Previous analysis assumed fixed **S** of size \simeq **m**.

Question: What happens as items are inserted and deleted?

- If |S| grows to more than **cm** for some constant **c** then hast table performance clearly degrades
- If |S| stays around

 m but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution: Rebuild hash table periodically!

- Choose a new table size based on current number of elements in table.
- Choose a new random hash function and rehash the elements.
- Discard old table and hash function.

Rehashing, amortization and...

... making the hash table dynamic

Previous analysis assumed fixed **S** of size \simeq **m**.

Question: What happens as items are inserted and deleted?

- If |S| grows to more than **cm** for some constant **c** then hast table performance clearly degrades
- If |S| stays around ~ m but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution: Rebuild hash table periodically!

- Choose a new table size based on current number of elements in table.
- Choose a new random hash function and rehash the elements.
- Discard old table and hash function.

Question: When to rebuild? How expensive?

Rebuilding the hash table

- Start with table size m where m is some estimate of |S| (can be some large constant).
- If |S| grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If |S| stays roughly the same but more than c|S| operations on table for some chosen constant c (say 10), rebuild.

Amortize cost of rebuilding to previously performed operations. Rebuilding ensures O(1) expected analysis holds even when S changes. Hence O(1) expected look up/insert/delete time dynamic data dictionary data structure!

Sariel (UIUC) CS473 20 Spring 2011 20 / 31

Some math required...

Lemma

Let **p** be a prime number,

x: an integer number in $\{1, \ldots, p-1\}$.

 \implies There exists a unique **y** s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse.

 $\implies \mathbb{Z}_p = \{0, 1, \dots, p-1\}$ when working module p is a field.

Sariel (UIUC) CS473 21 Spring 2011 21 / 31

Proof of lemma

Claim

Let **p** be a prime number. For any $\alpha, \beta, i \in \{1, ..., p-1\}$ s.t. $\alpha \neq \beta$, we have that $\alpha i \neq \beta i \mod p$.

Proof.

Assume for the sake of contradiction $\alpha \mathbf{i} = \beta \mathbf{i} \mod \mathbf{p}$. Then

$$\mathbf{i}(\alpha - \beta) = 0 \mod \mathbf{p}$$
 $\implies \mathbf{p} \text{ divides } \mathbf{i}(\alpha - \beta)$
 $\implies \mathbf{p} \text{ divides } \alpha - \beta$
 $\implies \alpha - \beta = 0$
 $\implies \alpha = \beta.$

And that is a contradiction.

Proof of lemma...

Uniqueness.

Proof.

Follows immediately from the above claim. Indeed, assume the claim is false and there are two distinct numbers $y,z\in\{1,\ldots,p-1\}$ such that

$$xy = 1 \mod p$$
 and $xz = 1 \mod p$.

But this contradicts the above claim (set $\mathbf{i} = \mathbf{x}$, $\alpha = \mathbf{y}$ and $\beta = \mathbf{z}$).

Sariel (UIUC) CS473 23 Spring 2011 23 / 31

Existence

Proof.

```
By claim, for any \alpha \in \{1, \ldots, p-1\} we have that \{\alpha*1 \mod p, \alpha*2 \mod p, \ldots, \alpha*(p-1) \mod p\} = \{1, 2, \ldots, p-1\}. \Longrightarrow There exists a number y \in \{1, \ldots, p-1\} such that \alpha y = 1 \mod p.
```


Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|

- Choose a prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0. \text{ Note that } |\mathcal{H}| = p(p-1).$

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and

Sariel (UIUC) CS473 Spring 2011 25 / 31

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|

- Choose a prime number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0. \text{ Note that } |\mathcal{H}| = p(p-1).$

Theorem

 \mathcal{H} is a **2**-universal hash family.

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and

Sariel (UIUC) CS473 Spring 2011 25 / 31

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|

- Choose a **prime** number $p \ge N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- ullet Let $\mathcal{H}=\{h_{a,b}\mid a,b\in\mathbb{Z}_p,a
 eq 0.$ Note that $|\mathcal{H}|=p(p-1).$

Theorem

 \mathcal{H} is a **2**-universal hash family.

Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function (a, b have to be stored) and evaluate it.

Sariel (UIUC) CS473 25 Spring 2011 25 / 31

Theorem

 \mathcal{H} is a (2)-universal hash family.

Proof.

Fix $\mathbf{x}, \mathbf{y} \in \mathcal{U}$. What is the probability they will collide if \mathbf{h} is picked randomly from \mathcal{H} ?

- Let a, b be bad for x, y if $h_{a,b}(x) = h_{a,b}(y)$
- Claim: Number of bad pairs is at most p(p-1)/m.
- Total number of hash functions is p(p-1) and hence probability of a collision is $\leq 1/m$.

Sariel (UIUC) CS473 26 Spring 2011 26 / 31

Theorem

 \mathcal{H} is a (2)-universal hash family.

Proof.

Fix $\mathbf{x}, \mathbf{y} \in \mathcal{U}$. What is the probability they will collide if \mathbf{h} is picked randomly from \mathcal{H} ?

- Let a, b be bad for x, y if $h_{a,b}(x) = h_{a,b}(y)$
- Claim: Number of bad pairs is at most p(p-1)/m.
- Total number of hash functions is p(p-1) and hence probability of a collision is $\leq 1/m$.

26 / 31

Spring 2011

Some Lemmas

Lemma

If $x \neq y$ then for any $a, b \in \mathbb{Z}_p$ such that $a \neq 0$, ax + b mod $p \neq ay + b$ mod p.

Proof.

If $ax + b \mod p = ay + b \mod p$ then $a(x - y) \mod p = 0$ and $a \neq 0$ and $(x - y) \neq 0$. However, a and (x - y) cannot divide p since p is prime and a < p and (x - y) < p.

Sariel (UIUC) CS473 27 Spring 2011 27 / 31

Some Lemmas

Lemma

If $x \neq y$ then for each (r, s) such that $r \neq s$ and $0 \leq r, s \leq p-1$ there is exactly one a, b such that $ax + b \mod p = r$ and $ay + b \mod p = s$.

Proof.

Solve the two equations:

$$ax + b = r \mod p$$
 and $ay + b = s \mod p$

We get
$$a = \frac{r-s}{x-y} \mod p$$
 and $b = r - ax \mod p$.

Sariel (UIUC) CS473 28 Spring 2011 28 / 31

Proof of Claim

Proof.

Let $a, b \in \mathbb{Z}_p$ such that $a \neq 0$ and $h_{a,b}(x) = h_{a,b}(y)$.

- Let $ax + b \mod p = r$ and $ay + b \mod p$.
- Collision if and only if $r = s \mod m$.
- Number of pairs (r, s) such that $r \neq s$ and $0 \leq r, s \leq p-1$ and $r = s \mod m$ is p(p-1)/m.
- From previous lemma for each bad pair (a, b) there is a unique pair (r, s) such that $r = s \mod m$. Hence total number of bad pairs is p(p-1)/m.
- Prob of x and y to collide:

$$\frac{\text{\# bad pairs}}{\text{\#pairs}} = \frac{p(p-1)/m}{p(p-1)} = \frac{1}{m}.$$

Sariel (UIUC) CS473 29 Spring 2011 29 / 31

Perfect Hashing

Question: Can we make look up time O(1) in worst case?

Yes for static dictionaries but then space usage is O(m) only in expectation.

Sariel (UIUC) CS473 30 Spring 2011 30 / 31

Take away points

- Hashing is a powerful and important technique for dictionaries.
 Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.
- Many applications in practice.

Sariel (UIUC) CS473 31 Spring 2011 31 / 31

Sariel (UIUC) CS473 32 Spring 2011 32 / 3

Sariel (UIUC) CS473 33 Spring 2011 33 / 33

Sariel (UIUC) CS473 34 Spring 2011 34 / 3

Sariel (UIUC) CS473 35 Spring 2011 35 / 3