CS 473: Fundamental Algorithms, Spring 2011

More Dynamic Programming

Lecture 10 February 22, 2011

Part I

All Pairs Shortest Paths

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node **s** find shortest path from **s** to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m + n) \log n)$ with heaps and $O(m + n \log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: **O(nm)**.

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms **n** times, once for each vertex.

- Non-negative lengths. O(nm log n) with heaps and O(nm + n² log n) using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. Can we do better?

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms $\bf n$ times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. Can we do better?

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ (*)

All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms $\bf n$ times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- Arbitrary edge lengths: $O(n^2m)$. Can we do better?

- 4 □ ト 4 圖 ト 4 필 ト · 夏 · かくで

Shortest Paths and Recursion

- Can we compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $\mathbf{s} = \mathbf{v}_0 \to \mathbf{v}_1 \to \mathbf{v}_2 \to \ldots \to \mathbf{v}_k$ is a shortest path from \mathbf{s} to \mathbf{v}_k then for $1 \leq \mathbf{i} < \mathbf{k}$:

ullet $\mathbf{s} = \mathbf{v}_0
ightarrow \mathbf{v}_1
ightarrow \mathbf{v}_2
ightarrow \ldots
ightarrow \mathbf{v}_i$ is a shortest path from \mathbf{s} to \mathbf{v}_i

Sub-problem idea: paths of fewer hops/edges

Shortest Paths and Recursion

- Can we compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

 \bullet $s=v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

Sub-problem idea: paths of fewer hops/edges

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ (*)

Shortest Paths and Recursion

- Can we compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

 \bullet $s=v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

Sub-problem idea: paths of fewer hops/edges

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note:
$$dist(s, v) = OPT(v, n - 1)$$

Recursion for OPT(v, k):

$$\mathsf{OPT}(\mathsf{v},\mathsf{k}) = \min_{\mathsf{u} \in \mathsf{V}} (\mathsf{OPT}(\mathsf{u},\mathsf{k}-1) + \mathsf{c}(\mathsf{u},\mathsf{v})).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n - 1)

Recursion for OPT(v, k):

$$\mathsf{OPT}(\mathsf{v},\mathsf{k}) = \min_{\mathsf{u} \in \mathsf{V}} (\mathsf{OPT}(\mathsf{u},\mathsf{k}-1) + \mathsf{c}(\mathsf{u},\mathsf{v})).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n - 1)

Recursion for OPT(v, k):

$$\mathsf{OPT}(\mathsf{v},\mathsf{k}) = \min_{\mathsf{u} \in \mathsf{V}} (\mathsf{OPT}(\mathsf{u},\mathsf{k}-1) + \mathsf{c}(\mathsf{u},\mathsf{v})).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n - 1)

Recursion for **OPT(v, k)**:

$$\mathsf{OPT}(v,k) = \min_{u \in V} (\mathsf{OPT}(u,k-1) + c(u,v)).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n - 1)

Recursion for OPT(v, k):

$$\mathsf{OPT}(v,k) = \min_{u \in V} (\mathsf{OPT}(u,k-1) + c(u,v)).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

Single-source problem: fix source s.

OPT(v, k): shortest path distance from s to v using at most k edges.

Note: dist(s, v) = OPT(v, n - 1)

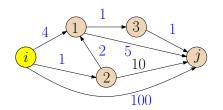
Recursion for OPT(v, k):

$$\mathsf{OPT}(v,k) = \min_{u \in V} (\mathsf{OPT}(u,k-1) + c(u,v)).$$

Base case: $\mathsf{OPT}(\mathsf{v},1) = \mathsf{c}(\mathsf{s},\mathsf{v})$ if $(\mathsf{s},\mathsf{v}) \in \mathsf{E}$ otherwise ∞ Leads to Bellman-Ford algorithm — see text book.

 $\mathsf{OPT}(\mathsf{v},\mathsf{k})$ values are also of independent interest: shortest paths with at most k hops

- Number vertices arbitrarily as v_1, v_2, \dots, v_n
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k



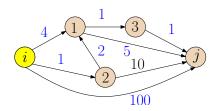
```
dist(i, j, 0) = 100

dist(i, j, 1) = 9

dist(i, j, 2) = 8

dist(i, j, 3) = 5
```

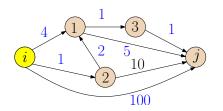
- Number vertices arbitrarily as $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k



$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

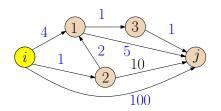
- Number vertices arbitrarily as v_1, v_2, \dots, v_n
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k



$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

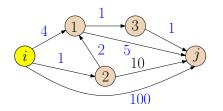
- Number vertices arbitrarily as v_1, v_2, \dots, v_n
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k



$$dist(i, j, 0) = 100$$

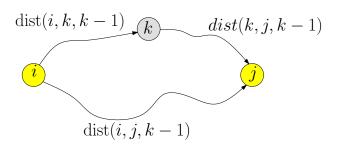
 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$

- Number vertices arbitrarily as v_1, v_2, \dots, v_n
- dist(i, j, k): shortest path distance between v_i and v_j among all paths in which the largest index of an *intermediate node* is at most k



$$dist(i, j, 0) = 100$$

 $dist(i, j, 1) = 9$
 $dist(i, j, 2) = 8$
 $dist(i, j, 3) = 5$



$$dist(i, j, k) = min(dist(i, j, k-1), dist(i, k, k-1) + dist(k, j, k-1))$$

Base case: dist(i, j, 0) = c(i, j) if $(i, j) \in E$, otherwise ∞ Correctness: If $i \to j$ shortest path goes through k then k occurs only once on the path — otherwise there is a negative length cycle.

- 4 ロ ト 4 部 ト 4 章 ト 4 章 ト 9 Q (*)

for All-Pairs Shortest Paths

```
Check if \boldsymbol{G} has a negative cycle using Bellman-Ford in \boldsymbol{O}(mn) time If there is a negative cycle return
```

```
\begin{split} &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,0)=c(i,j) \text{ (* } c(i,j)=\infty \text{ if (i,j) not edge, 0 if } i=j \text{ *)} \end{split} &\text{for } k=1 \text{ to n do} \\ &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,k)=\text{min}(\text{dist}(i,j,k-1),\text{dist}(i,k,k-1)+\text{dist}(k,j,k-1)) \end{split}
```

Correctness: Recursion works under the assumption that all shortest paths are defined (no negative length cycle).

for All-Pairs Shortest Paths

Check if \boldsymbol{G} has a negative cycle using Bellman-Ford in $\boldsymbol{O}(mn)$ time If there is a negative cycle return

```
\begin{split} &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,0)=c(i,j) \text{ (* } c(i,j)=\infty \text{ if (i,j) not edge, 0 if } i=j \text{ *)} \end{split} &\text{for } k=1 \text{ to n do} \\ &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,k)=\text{min}(\text{dist}(i,j,k-1),\text{dist}(i,k,k-1)+\text{dist}(k,j,k-1)) \end{split}
```

Correctness: Recursion works under the assumption that all shortest paths are defined (no negative length cycle).

Running Time: $\Theta(n^3)$, Space: $\Theta(n^3)$.

for All-Pairs Shortest Paths

Check if \boldsymbol{G} has a negative cycle using Bellman-Ford in $\boldsymbol{O}(mn)$ time If there is a negative cycle return

```
\begin{split} &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,0)=c(i,j) \text{ (* } c(i,j)=\infty \text{ if (i,j) not edge, 0 if } i=j \text{ *)} \end{split} &\text{for } k=1 \text{ to n do} \\ &\text{for } i=1 \text{ to n do} \\ &\text{for } j=1 \text{ to n do} \\ &\text{dist}(i,j,k)=\text{min}(\text{dist}(i,j,k-1),\text{dist}(i,k,k-1)+\text{dist}(k,j,k-1)) \end{split}
```

Correctness: Recursion works under the assumption that all shortest paths are defined (no negative length cycle).

Running Time: $\Theta(n^3)$, Space: $\Theta(n^3)$.

for All-Pairs Shortest Paths

Do we need a separate algorithm to check if there is negative cycle?

```
for i = 1 to n do
   for i = 1 to n do
    dist(i,j,0) = c(i,j) (* c(i,j) = \infty if (i,j) not edge, 0 if i = j *)
for k = 1 to n do
   for i = 1 to n do
    for i = 1 to n do
         dist(i, j, k) = min(dist(i, j, k - 1), dist(i, k, k - 1) + dist(k, j, k - 1))
for i = 1 to n do
   if (dist(i, i, n - 1) < 0) then
    Output that there is a negative length cycle in G
```

Correctness: exercise

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 りゅぐ

for All-Pairs Shortest Paths

Do we need a separate algorithm to check if there is negative cycle?

```
for i = 1 to n do
   for i = 1 to n do
    dist(i,j,0) = c(i,j) (* c(i,j) = \infty if (i,j) not edge, 0 if i = j *)
for k = 1 to n do
   for i = 1 to n do
    for i = 1 to n do
         dist(i, j, k) = min(dist(i, j, k - 1), dist(i, k, k - 1) + dist(k, j, k - 1))
for i = 1 to n do
   if (dist(i, i, n - 1) < 0) then
    Output that there is a negative length cycle in G
```

Correctness: exercise

◆ロ > ← 個 > ← 差 > ← 差 > 一差 ● から(*)

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n x n array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n × n array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Finding the Paths

```
for i = 1 to n do
   for i = 1 to n do
    dist(i,j,0) = c(i,j) (* c(i,j) = \infty if (i,j) not edge, 0 if i = j *)
    Next(i, j) = -1
for k = 1 to n do
   for i = 1 to n do
    for j = 1 to n do
         if (dist(i, j, k-1) > dist(i, k, k-1) + dist(k, j, k-1)) then
             dist(i, j, k) = dist(i, k, k - 1) + dist(k, j, k - 1)
             Next(i, j) = k
for i = 1 to n do
   if (dist(i, i, n-1) < 0) then
    Output that there is a negative length cycle in G
```

Exercise: Given **Next** array and any two vertices **i**, **j** describe an

O(n) algorithm to find a i-i shortest path.

Summary of results on shortest paths

Single vertex		
No negative edges	Dijkstra	$O(n \log n + m)$
Edges cost might be negative But no negative cycles	Bellman Ford	O(nm)

All Pairs Shortest Paths

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$	
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$	
No negative cycles	Floyd-Warshall	$O(n^3)$	

Part II

Knapsack

Knapsack Problem

- Input Given a Knapsack of capacity \mathbf{W} lbs. and \mathbf{n} objects with ith object having weight $\mathbf{w_i}$ and value $\mathbf{v_i}$; assume $\mathbf{W}, \mathbf{w_i}, \mathbf{v_i}$ are all positive integers
- Goal Fill the Knapsack without exceeding weight limit while maximizing value.

Basic problem that arises in many applications as a sub-problem.

Knapsack Problem

- Input Given a Knapsack of capacity \mathbf{W} lbs. and \mathbf{n} objects with ith object having weight $\mathbf{w_i}$ and value $\mathbf{v_i}$; assume $\mathbf{W}, \mathbf{w_i}, \mathbf{v_i}$ are all positive integers
- Goal Fill the Knapsack without exceeding weight limit while maximizing value.

Basic problem that arises in many applications as a sub-problem.

Knapsack Example

Example

Item	1	2	3	4	5
Value	1	6	18	22	28
Weight	1	2	5	6	7

If W = 11, the best is $\{3, 4\}$ giving value 40.

Special Case

When $\mathbf{v_i} = \mathbf{w_i}$, the Knapsack problem is called the Subset Sum Problem.

Greedy Approach

- Pick objects with greatest value
 - Let W = 2, $w_1 = w_2 = 1$, $w_3 = 2$, $v_1 = v_2 = 2$ and $v_3 = 3$; greedy strategy will pick $\{3\}$, but the optimal is $\{1, 2\}$
- Pick objects with smallest weight
 - Let W=2, $w_1=1$, $w_2=2$, $v_1=1$ and $v_2=3$; greedy strategy will pick $\{1\}$, but the optimal is $\{2\}$
- Pick objects with largest v_i/w_i ratio
 - Let W=4, $w_1=w_2=2$, $w_3=3$, $v_1=v_2=3$ and $v_3=5$; greedy strategy will pick $\{3\}$, but the optimal is $\{1,2\}$
 - Can show that a slight modification always gives half the optimum profit: pick the better of the output of this algorithm and the largest value item. Also, the algorithms gives better approximations when all item weights are small when compared to W.

Sariel (UIUC) CS473 18 Spring 2011 18 / 33

First guess: Opt(i) is the optimum solution value for items $1, \ldots, i$.

Observation

```
Consider an optimal solution \mathcal{O} for 1, \ldots, i
```

Case item $\mathbf{i} \not\in \mathcal{O}$ \mathcal{O} is an optimal solution to items $\mathbf{1}$ to $\mathbf{i}-\mathbf{1}$

Case item $i \in \mathcal{O}$ Then $\mathcal{O} - \{i\}$ is an optimum solution for items 1 to n-1 in knapsack of capacity $W - w_i$.

Subproblems depend also on remaining capacity. Cannot write subproblem only in terms of

Opt(1) Opt(i 1)

 $\mathrm{Opt}(1),\ldots,\mathrm{Opt}(\mathsf{i}-1)$

 $\mathrm{Opt}(\mathbf{i},\mathbf{w})$: optimum profit for items $\mathbf{1}$ to \mathbf{i} in knapsack of size \mathbf{w}

Goal: compute Opt(n, W)

Sariel (UIUC) CS473 19 Spring 2011 19 / 33

First guess: Opt(i) is the optimum solution value for items $1, \ldots, i$.

Observation

```
Consider an optimal solution \mathcal{O} for 1, \ldots, i
```

Case item $\mathbf{i} \not\in \mathcal{O}$ \mathcal{O} is an optimal solution to items $\mathbf{1}$ to $\mathbf{i}-\mathbf{1}$

Case item $i \in \mathcal{O}$ Then $\mathcal{O} - \{i\}$ is an optimum solution for items 1 to n-1 in knapsack of capacity $W - w_i$.

Subproblems depend also on remaining capacity. Cannot write subproblem only in terms of $\operatorname{Opt}(1), \ldots, \operatorname{Opt}(i-1)$.

Opt(i, w): optimum profit for items 1 to i in knapsack of size w

Goal: compute Opt(n, W)

Sariel (UIUC) CS473 19 Spring 2011 19 / 33

First guess: Opt(i) is the optimum solution value for items $1, \ldots, i$.

Observation

```
Consider an optimal solution \mathcal{O} for 1, \ldots, i
```

Case item $\mathbf{i} \not\in \mathcal{O}$ \mathcal{O} is an optimal solution to items $\mathbf{1}$ to $\mathbf{i}-\mathbf{1}$

Case item $i \in \mathcal{O}$ Then $\mathcal{O} - \{i\}$ is an optimum solution for items 1 to n-1 in knapsack of capacity $W - w_i$.

Subproblems depend also on remaining capacity. Cannot write subproblem only in terms of

 $\operatorname{Opt}(1), \ldots, \operatorname{Opt}(i-1).$

Opt(i, w): optimum profit for items 1 to i in knapsack of size w

Goal: compute Opt(n, W)

40140101000

Sariel (UIUC) CS473 19 Spring 2011 19 / 33

Dynamic Programming Solution

Definition

Let $\mathrm{Opt}(\mathbf{i},\mathbf{w})$ be the optimal way of picking items from 1 to \mathbf{i} , with total weight not exceeding \mathbf{w}

$$\mathrm{Opt}(\textbf{i},\textbf{w}) = \left\{ \begin{array}{ll} 0 & \text{if } \textbf{i} = 0 \\ \mathrm{Opt}(\textbf{i} - \textbf{1},\textbf{w}) & \text{if } \textbf{w}_{\textbf{i}} > \textbf{w} \\ \max \left\{ \begin{array}{ll} \mathrm{Opt}(\textbf{i} - \textbf{1},\textbf{w}) \\ \mathrm{Opt}(\textbf{i} - \textbf{1},\textbf{w} - \textbf{w}_{\textbf{i}}) + \textbf{v}_{\textbf{i}} \end{array} \right. \end{array} \right. \text{otherwise}$$

An Iterative Algorithm

```
\begin{array}{l} \mbox{for } w = 0 \mbox{ to } W \mbox{ do} \\ M[0,w] = 0 \\ \mbox{for } i = 1 \mbox{ to } n \mbox{ do} \\ \mbox{ for } w = 1 \mbox{ to } W \mbox{ do} \\ \mbox{ if } (w_i > w) \mbox{ then} \\ M[i,w] = M[i-1,w] \\ \mbox{ else} \\ M[i,w] = \max(M[i-1,w],M[i-1,w-w_i]+v_i) \end{array}
```

Running Time

- Time taken is O(nW)
- Input has size $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$; so running time not polynomial but "pseudo-polynomial"!

An Iterative Algorithm

```
\begin{array}{l} \mbox{for } w = 0 \mbox{ to } W \mbox{ do} \\ M[0,w] = 0 \\ \mbox{for } i = 1 \mbox{ to } n \mbox{ do} \\ \mbox{ for } w = 1 \mbox{ to } W \mbox{ do} \\ \mbox{ if } (w_i > w) \mbox{ then} \\ M[i,w] = M[i-1,w] \\ \mbox{ else} \\ M[i,w] = \max(M[i-1,w],M[i-1,w-w_i]+v_i) \end{array}
```

Running Time

- Time taken is O(nW)
- Input has size $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$; so running time not polynomial but "pseudo-polynomial"!

An Iterative Algorithm

```
\begin{array}{l} \mbox{for } w = 0 \mbox{ to } W \mbox{ do} \\ M[0,w] = 0 \\ \mbox{for } i = 1 \mbox{ to } n \mbox{ do} \\ \mbox{ for } w = 1 \mbox{ to } W \mbox{ do} \\ \mbox{ if } (w_i > w) \mbox{ then} \\ M[i,w] = M[i-1,w] \\ \mbox{ else} \\ M[i,w] = max(M[i-1,w],M[i-1,w-w_i]+v_i) \end{array}
```

Running Time

- Time taken is O(nW)
- Input has size $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$; so running time not polynomial but "pseudo-polynomial"!

Knapsack Algorithm and Polynomial time

Input size for Knapsack: $O(n) + \log W + \sum_{i=1}^n (\log w_i + \log v_i)$

Running time of dynamic programming algorithm: O(nW)

Not a polynomial time algorithm.

Example: $W = 2^n$ and $w_i, v_i \in [1..2^n]$.

Input size is $O(n^2)$, running time is $O(n2^n)$ arithmetic/comparisons

Algorithm is called a **pseudo-polynomial** time algorithm because running time is polynomial if *numbers* in input are of size polynomial in the **combinatorial size** of problem.

Knapsack is NP-hard if numbers are not polynomial in n.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Knapsack Algorithm and Polynomial time

Input size for Knapsack: $O(n) + \log W + \sum_{i=1}^{n} (\log w_i + \log v_i)$

Running time of dynamic programming algorithm: O(nW)

Not a polynomial time algorithm.

Example: $W = 2^n$ and $w_i, v_i \in [1..2^n]$.

Input size is $O(n^2)$, running time is $O(n2^n)$ arithmetic/comparisons

Algorithm is called a **pseudo-polynomial** time algorithm because running time is polynomial if *numbers* in input are of size polynomial in the **combinatorial size** of problem.

Knapsack is NP-hard if numbers are not polynomial in n.

Knapsack Algorithm and Polynomial time

Input size for Knapsack: $O(n) + \log W + \sum_{i=1}^{n} (\log w_i + \log v_i)$

Running time of dynamic programming algorithm: O(nW)

Not a polynomial time algorithm.

Example: $W = 2^n$ and $w_i, v_i \in [1..2^n]$.

Input size is $O(n^2)$, running time is $O(n2^n)$ arithmetic/comparisons.

Algorithm is called a **pseudo-polynomial** time algorithm because running time is polynomial if *numbers* in input are of size polynomial in the **combinatorial size** of problem.

Knapsack is NP-hard if numbers are not polynomial in n.

Part III

Traveling Salesman Problem

Traveling Salesman Problem

Input A graph **G** = (**V**, **E**) with non-negative edge costs/lengths. **c(e)** for edge **e**Goal Find a tour of minimum cost that visits each node.

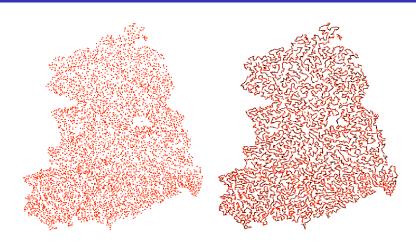
No polynomial time algorithm known. Problem is NP-Hard.

Traveling Salesman Problem

Input A graph **G** = (**V**, **E**) with non-negative edge costs/lengths. **c(e)** for edge **e**Goal Find a tour of minimum cost that visits each node.

No polynomial time algorithm known. Problem is NP-Hard.

Example: optimal tour for cities of a country (which one?)



How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn \log n})$ for some constant c>1

Can we do better? Can we get a **2**0(n) time algorithm?

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn \log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn \log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn \log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

How many different tours are there? n!

Stirling's formula: $n! \simeq \sqrt{n} (n/e)^n$ which is $\Theta(2^{cn \log n})$ for some constant c>1

Can we do better? Can we get a $2^{O(n)}$ time algorithm?

- Order vertices as v₁, v₂, ..., v_n
- OPT(S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. Want OPT(V).

Can we compute **OPT(S)** recursively?

- Say v ∈ S. What are the two neighbors of v in optimum tour in S?
- If u, w are neighbors of v in an optimum tour of S then removing v gives an optimum path from u to w visiting all nodes in S {v}.

Path from ${\bf u}$ to ${\bf w}$ is not a recursive subproblem! Need to find a more general problem to allow recursion.

- Order vertices as v₁, v₂, ..., v_n
- OPT(S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. Want OPT(V).

Can we compute **OPT(S)** recursively?

- Say $\mathbf{v} \in \mathbf{S}$. What are the two neighbors of \mathbf{v} in optimum tour in \mathbf{S} ?
- If u, w are neighbors of v in an optimum tour of S then removing v gives an optimum path from u to w visiting all nodes in S {v}.

Path from ${\bf u}$ to ${\bf w}$ is not a recursive subproblem! Need to find a more general problem to allow recursion.

- Order vertices as v₁, v₂, ..., v_n
- OPT(S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. Want OPT(V).

Can we compute **OPT(S)** recursively?

- Say $\mathbf{v} \in \mathbf{S}$. What are the two neighbors of \mathbf{v} in optimum tour in \mathbf{S} ?
- If u, w are neighbors of v in an optimum tour of S then removing v gives an optimum path from u to w visiting all nodes in S — {v}.

Path from ${\bf u}$ to ${\bf w}$ is not a recursive subproblem! Need to find a more general problem to allow recursion.

- 4 □ ト 4 圖 ト 4 필 ト · 夏 · かくで

- Input A graph G = (V, E) with non-negative edge costs/lengths(c(e) for edge e) and two nodes s, t
- Goal Find a path from **s** to **t** of minimum cost that visits each node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

• OPT(u, v, S): optimum TSP Path from u to v in the graph restricted to S (here $u, v \in S$).

- Input A graph G = (V, E) with non-negative edge costs/lengths(c(e) for edge e) and two nodes s, t
- Goal Find a path from **s** to **t** of minimum cost that visits each node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

• OPT(u, v, S): optimum TSP Path from u to v in the graph restricted to S (here $u, v \in S$).

- Input A graph G = (V, E) with non-negative edge costs/lengths(c(e) for edge e) and two nodes s, t
 - Goal Find a path from **s** to **t** of minimum cost that visits each node exactly once.

Can solve TSP using above. Do you see how?

Recursion for optimum TSP Path problem:

• OPT($\mathbf{u}, \mathbf{v}, \mathbf{S}$): optimum TSP Path from \mathbf{u} to \mathbf{v} in the graph restricted to \mathbf{S} (here $\mathbf{u}, \mathbf{v} \in \mathbf{S}$).

Continued...

What is the next node in the optimum path from \mathbf{u} to \mathbf{v} ? Suppose it is \mathbf{w} . Then what is $\mathbf{OPT}(\mathbf{u}, \mathbf{v}, \mathbf{S})$?

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\})$$

We do not know w! So try all possibilities for w.

Continued...

What is the next node in the optimum path from \mathbf{u} to \mathbf{v} ? Suppose it is \mathbf{w} . Then what is $\mathbf{OPT}(\mathbf{u}, \mathbf{v}, \mathbf{S})$?

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\})$$

We do not know w! So try all possibilities for w.

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subseteq V$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n²
- hence number of subproblems is $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆豆 ◆ 少へで

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subseteq V$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n²
- hence number of subproblems is $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subseteq V$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n²
- hence number of subproblems is $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subseteq V$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n^2
- hence number of subproblems is O(n²2ⁿ)

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

4 □ > 4 個 > 4 절 > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4 Q > 4

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? OPT(u, v, S) for $u, v \in S$, $S \subseteq V$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n^2
- hence number of subproblems is O(n²2ⁿ)

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

$$\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S}) = \mathsf{min}_{\mathsf{w} \in \mathsf{S},\mathsf{w} \neq \mathsf{u},\mathsf{v}} \Big(\mathsf{c}(\mathsf{u},\mathsf{w}) + \mathsf{OPT}(\mathsf{w},\mathsf{v},\mathsf{S} - \{\mathsf{u}\}) \Big)$$

What are the subproblems for the original problem OPT(s, t, V)? $\mathsf{OPT}(\mathsf{u},\mathsf{v},\mathsf{S})$ for $\mathsf{u},\mathsf{v}\in\mathsf{S},\mathsf{S}\subset\mathsf{V}$.

How many subproblems?

- number of distinct subsets S of V is at most 2ⁿ
- number of pairs of nodes in a set S is at most n²
- hence number of subproblems is $O(n^22^n)$

Exercise: Show that one can compute TSP using above dynamic program in $O(n^32^n)$ time and $O(n^22^n)$ space.

Disadvantage of dynamic programming solution: memory!

Sariel (UIUC) CS473 30 Spring 2011

30 / 33

Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

- How to come up with the recursion?
- How to recognize that dynamic programming may apply?

Dynamic Programming: Postscript

Dynamic Programming = Smart Recursion + Memoization

- How to come up with the recursion?
- How to recognize that dynamic programming may apply?

Some Tips

- Problems where there is a natural linear ordering: sequences, paths, intervals, DAGs etc. Recursion based on ordering (left to right or right to left or topological sort) usually works.
- Problems involving trees: recursion based on subtrees.
- More generally:
 - Problem admits a natural recursive divide and conquer
 - If optimal solution for whole problem can be simply composed from optimal solution for each separate pieces then plain divide and conquer works directly
 - If optimal solution depends on all pieces then can apply dynamic programming if interface/interaction between pieces is limited. Augment recursion to not simply find an optimum solution but also an optimum solution for each possible way to interact with the other pieces.

Examples

- Longest Increasing Subsequence: break sequence in the middle say. What is the interaction between the two pieces in a solution?
- Sequence Alignment: break both sequences in two pieces each. What is the interaction between the two sets of pieces?
- Independent Set in a Tree: break tree at root into subtrees.
 What is the interaction between the sutrees?
- Independent Set in an graph: break graph into two graphs. What is the interaction? Very high!
- Knapsack: Split items into two sets of half each. What is the interaction?

