
Algorithms Appendix: Solving Recurrences

“. . . O Zarathustra, who you are and must become” behold you are the
teacher of the eternal recurrence – that is your destiny! That you as the
first must teach this doctrine – how could this great destiny not be your
greatest danger and sickness too?

— Friedrich Nietzsche, Also sprach Zarathustra (1885)
[translated by Walter Kaufmann]

Solving Recurrences

1 Introduction

A recurrence is a recursive description of a function, usually of the form F : IN→ IR, or a description
of such a function in terms of itself. Like all recursive structures, a recurrence consists of one or more
base cases and one or more recursive cases. Each of these cases is an equation or inequality, with some
function value f (n) on the left side. The base cases give explicit values for a (typically finite, typically
small) subset of the possible values of n. The recursive cases relate the function value f (n) to function
value f (k) for one or more integers k < n; typically, each recursive case applies to an infinite number of
possible values of n.

For example, the following recurrence (written in two different but standard ways) describes the
identity function f (n) = n:

f (n) =

(

0 if n= 0

f (n− 1) + 1 otherwise

f (0) = 0

f (n) = f (n− 1) + 1 for all n> 0

In both presentations, the first line is the only base case, and the second line is the only recursive case.
The same function can satisfy many different recurrences; for example, both of the following recurrences
also describe the identity function:

f (n) =

0 if n= 0

1 if n= 1

f (bn/2c) + f (dn/2e) otherwise

f (n) =

0 if n= 0

2 · f (n/2) if n is even and n> 0

f (n− 1) + 1 if n is odd

We say that a particular function satisfies a recurrence, or is the solution to a recurrence, if each
of the statements in the recurrence is true. Most recurrences—at least, those that we will encounter
in this class—have a solution; moreover, if every case of the recurrence is an equation, that solution is
unique. Specifically, if we transform the recursive formula into a recursive algorithm, the solution to the
recurrence is the function computed by that algorithm!

Recurrences arise naturally in the analysis of algorithms, especially recursive algorithms. In many
cases, we can express the running time of an algorithm as a recurrence, where the recursive cases of the
recurrence correspond exactly to the recursive cases of the algorithm. Recurrences are also useful tools
for solving counting problems—How many objects of a particular kind exist?

By itself, a recurrence is not a satisfying description of the running time of an algorithm or a bound on
the number of widgets. Instead, we need a closed-form solution to the recurrence; this is a non-recursive
description of a function that satisfies the recurrence. For recurrence equations, we sometimes prefer
an exact closed-form solution, but such a solution may not exist, or may be too complex to be useful.

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Appendix: Solving Recurrences

Thus, for most recurrences, especially those arising in algorithm analysis, we can be satisfied with an
asymptotic solution of the form Θ(f (n)), for some explicit (non-recursive) function g(n).

For recursive inequalities, we prefer a tight solution; this is a function that would still satisfy the
recurrence if all the inequalities were replaced with the corresponding equations. Again, exactly tight
solutions may not exist, or may be too complex to be useful, so we may have to settle for a looser
solution and/or an asymptotic solution of the form O(g(n)) or Ω(g(n)).

2 The Ultimate Method: Guess and Confirm

Ultimately, there is only one fail-safe method to solve any recurrence:

Guess the answer, and then prove it correct by induction.

Later sections of these notes describe techniques to generate guesses that are guaranteed to be correct,
provided you use them correctly. But if you’re faced with a recurrence that doesn’t seem to fit any of these
methods, or if you’ve forgotten how those techniques work, don’t despair! If you guess a closed-form
solution and then try to verify your guess inductively, usually either the proof will succeed, in which
case you’re done, or the proof will fail, in which case the failure will help you refine your guess. Where
you get your initial guess is utterly irrelevant1—from a classmate, from a textbook, on the web, from the
answer to a different problem, scrawled on a bathroom wall in Siebel, included in a care package from
your mom, dictated by the machine elves, whatever. If you can prove that the answer is correct, then it’s
correct!

2.1 Tower of Hanoi

The classical Tower of Hanoi problem gives us the recurrence T(n) = 2T(n − 1) + 1 with base case
T(0) = 0. Just looking at the recurrence we can guess that T(n) is something like 2n. If we write out
the first few values of T (n), we discover that they are each one less than a power of two.

T (0) = 0, T (1) = 1, T (2) = 3, T (3) = 7, T (4) = 15, T (5) = 31, T (6) = 63, . . . ,

It looks like T(n) = 2n − 1 might be the right answer. Let’s check.

T (0) = 0= 20− 1 Ø

T (n) = 2T (n− 1) + 1

= 2(2n−1− 1) + 1 [induction hypothesis]

= 2n− 1 Ø [algebra]

We were right! Hooray, we’re done!
Another way we can guess the solution is by unrolling the recurrence, by substituting it into itself:

T (n) = 2T (n− 1) + 1

= 2 (2T (n− 2) + 1) + 1

= 4T (n− 2) + 3

= 4 (2T (n− 3) + 1) + 3

= 8T (n− 2) + 7

= · · ·
1. . . except of course during exams, where you aren’t supposed to use any outside sources

2

Algorithms Appendix: Solving Recurrences

It looks like unrolling the initial Hanoi recurrence k times, for any non-negative integer k, will give us
the new recurrence T (n) = 2kT (n− k) + (2k − 1). Let’s prove this by induction:

T (n) = 2T (n− 1) + 1 Ø [k = 0, by definition]

T (n) = 2k−1T (n− (k− 1)) + (2k−1− 1) [inductive hypothesis]

= 2k−1�2T (n− k) + 1
�

+ (2k−1− 1) [initial recurrence for T (n− (k− 1))]

= 2kT (n− k) + (2k − 1) Ø [algebra]

Our guess was correct! In particular, unrolling the recurrence n times give us the recurrence T(n) =
2nT (0) + (2n− 1). Plugging in the base case T (0) = 0 give us the closed-form solution T (n) = 2n− 1.

2.2 Fibonacci numbers

Let’s try a less trivial example: the Fibonacci numbers Fn = Fn−1 + Fn−2 with base cases F0 = 0 and
F1 = 1. There is no obvious pattern in the first several values (aside from the recurrence itself), but we
can reasonably guess that Fn is exponential in n. Let’s try to prove inductively that Fn ≤ α · cn for some
constants a > 0 and c > 1 and see how far we get.

Fn = Fn−1+ Fn−2

≤ α · cn−1+α · cn−2 [“induction hypothesis”]

≤ α · cn ???

The last inequality is satisfied if cn ≥ cn−1+ cn−2, or more simply, if c2− c − 1≥ 0. The smallest value
of c that works is φ = (1+

p
5)/2 ≈ 1.618034; the other root of the quadratic equation has smaller

absolute value, so we can ignore it.
So we have most of an inductive proof that Fn ≤ α ·φn for some constant α. All that we’re missing

are the base cases, which (we can easily guess) must determine the value of the coefficient a. We quickly
compute

F0

φ0 =
0

1
= 0 and

F1

φ1 =
1

φ
≈ 0.618034> 0,

so the base cases of our induction proof are correct as long as α≥ 1/φ. It follows that Fn ≤ φn−1 for all
n≥ 0.

What about a matching lower bound? Essentially the same inductive proof implies that Fn ≥ β ·φn

for some constant β , but the only value of β that works for all n is the trivial β = 0! We could try to
find some lower-order term that makes the base case non-trivial, but an easier approach is to recall that
asymptotic Ω() bounds only have to work for sufficiently large n. So let’s ignore the trivial base case
F0 = 0 and assume that F2 = 1 is a base case instead. Some more easy calculation gives us

F2

φ2 =
1

φ2 ≈ 0.381966<
1

φ
.

Thus, the new base cases of our induction proof are correct as long as β ≤ 1/φ2, which implies that
Fn ≥ φn−2 for all n≥ 1.

Putting the upper and lower bounds together, we obtain the tight asymptotic bound Fn = Θ(φn). It
is possible to get a more exact solution by speculatively refining and conforming our current bounds, but
it’s not easy. Fortunately, if we really need it, we can get an exact solution using the annihilator method,
which we’ll see later in these notes.

3

Algorithms Appendix: Solving Recurrences

2.3 Mergesort

Mergesort is a classical recursive divide-and-conquer algorithm for sorting an array. The algorithm splits
the array in half, recursively sorts the two halves, and then merges the two sorted subarrays into the
final sorted array.

MERGESORT(A[1 .. n]):
if (n> 1)

m← bn/2c
MERGESORT(A[1 .. m])
MERGESORT(A[m+ 1 .. n])
MERGE(A[1 .. n], m)

MERGE(A[1 .. n], m):
i← 1; j← m+ 1
for k← 1 to n

if j > n
B[k]← A[i]; i← i+ 1

else if i > m
B[k]← A[j]; j← j+ 1

else if A[i]< A[j]
B[k]← A[i]; i← i+ 1

else
B[k]← A[j]; j← j+ 1

for k← 1 to n
A[k]← B[k]

Let T(n) denote the worst-case running time of MERGESORT when the input array has size n. The
MERGE subroutine clearly runs in Θ(n) time, so the function T (n) satisfies the following recurrence:

T (n) =

(

Θ(1) if n= 1,

T
�

dn/2e
�

+ T
�

bn/2c
�

+Θ(n) otherwise.

For now, let’s consider the special case where n is a power of 2; this assumption allows us to take the
floors and ceilings out of the recurrence. (We’ll see how to deal with the floors and ceilings later; the
short version is that they don’t matter.)

Because the recurrence itself is given only asymptotically—in terms of Θ() expressions—we can’t
hope for anything but an asymptotic solution. So we can safely simplify the recurrence further by
removing the Θ’s; any asymptotic solution to the simplified recurrence will also satisfy the original
recurrence. (This simplification is actually important for another reason; if we kept the asymptotic
expressions, we might be tempted to simplify them inappropriately.)

Our simplified recurrence now looks like this:

T (n) =

(

1 if n= 1,

2T (n/2) + n otherwise.

To guess at a solution, let’s try unrolling the recurrence.

T (n) = 2T (n/2) + n

= 2
�

2T (n/4) + n/2
�

+ n

= 4T (n/4) + 2n

= 8T (n/8) + 3n= · · ·

It looks like T (n) satisfies the recurrence T (n) = 2kT (n/2k) + kn for any positive integer k. Let’s verify
this by induction.

4

Algorithms Appendix: Solving Recurrences

T (n) = 2T (n/2) + n= 21T (n/21) + 1 · n Ø [k = 1, given recurrence]

T (n) = 2k−1T (n/2k−1) + (k− 1)n [inductive hypothesis]

= 2k−1�2T (n/2k) + n/2k−1�+ (k− 1)n [substitution]

= 2kT (n/2k) + kn Ø [algebra]

Our guess was right! The recurrence becomes trivial when n/2k = 1, or equivalently, when k = log2 n:

T (n) = nT (1) + n log2 n= n log2 n+ n.

Finally, we have to put back the Θ’s we stripped off; our final closed-form solution is T(n) = Θ(n logn).

2.4 An uglier divide-and-conquer example

Consider the divide-and-conquer recurrence T(n) =
p

n · T(
p

n) + n. This doesn’t fit into the form
required by the Master Theorem (which we’ll see below), but it still sort of resembles the Mergesort
recurrence—the total size of the subproblems at the first level of recursion is n—so let’s guess that
T (n) = O(n log n), and then try to prove that our guess is correct. (We could also attack this recurrence
by unrolling, but let’s see how far just guessing will take us.)

Let’s start by trying to prove an upper bound T(n) ≤ a n lg n for all sufficiently large n and some
constant a to be determined later:

T (n) =
p

n · T (
p

n) + n

≤
p

n · a
p

n lg
p

n+ n [induction hypothesis]

= (a/2)n lg n+ n [algebra]

≤ an lg n Ø [algebra]

The last inequality assumes only that 1≤ (a/2) log n,or equivalently, that n≥ 22/a. In other words, the
induction proof is correct if n is sufficiently large. So we were right!

But before you break out the champagne, what about the multiplicative constant a? The proof worked
for any constant a, no matter how small. This strongly suggests that our upper bound T (n) = O(n log n)
is not tight. Indeed, if we try to prove a matching lower bound T(n)≥ b n log n for sufficiently large n,
we run into trouble.

T (n) =
p

n · T (
p

n) + n

≥
p

n · b
p

n log
p

n+ n [induction hypothesis]

= (b/2)n log n+ n

6≥ bn log n

The last inequality would be correct only if 1> (b/2) log n, but that inequality is false for large values
of n, no matter which constant b we choose.

Okay, so Θ(n log n) is too big. How about Θ(n)? The lower bound is easy to prove directly:

T (n) =
p

n · T (
p

n) + n≥ n Ø

But an inductive proof of the upper bound fails.

T (n) =
p

n · T (
p

n) + n

≤
p

n · a
p

n+ n [induction hypothesis]

= (a+ 1)n [algebra]

6≤ an

5

Algorithms Appendix: Solving Recurrences

Hmmm. So what’s bigger than n and smaller than n lg n? How about n
p

lg n?

T (n) =
p

n · T (
p

n) + n≤
p

n · a
p

n
p

lg
p

n+ n [induction hypothesis]

= (a/
p

2)n
p

lg n+ n [algebra]

≤ a n
p

lg n for large enough n Ø

Okay, the upper bound checks out; how about the lower bound?

T (n) =
p

n · T (
p

n) + n≥
p

n · b
p

n
p

lg
p

n+ n [induction hypothesis]

= (b/
p

2)n
p

lg n+ n [algebra]

6≥ b n
p

lg n

No, the last step doesn’t work. So Θ(n
p

lg n) doesn’t work.
Okay. . . what else is between n and n lg n? How about n lg lg n?

T (n) =
p

n · T (
p

n) + n≤
p

n · a
p

n lg lg
p

n+ n [induction hypothesis]

= a n lg lg n− a n+ n [algebra]

≤ a n lg lg n if a ≥ 1 Ø

Hey look at that! For once, our upper bound proof requires a constraint on the hidden constant a. This
is an good indication that we’ve found the right answer. Let’s try the lower bound:

T (n) =
p

n · T (
p

n) + n≥
p

n · b
p

n lg lg
p

n+ n [induction hypothesis]

= b n lg lg n− b n+ n [algebra]

≥ b n lg lg n if b ≤ 1 Ø

Hey, it worked! We have most of an inductive proof that T(n) ≤ an lg lg n for any a ≥ 1 and most of
an inductive proof that T (n)≥ bn lg lg n for any b ≤ 1. Technically, we’re still missing the base cases in
both proofs, but we can be fairly confident at this point that T(n) = Θ(n log logn).

3 Divide and Conquer Recurrences (Recursion Trees)

Many divide and conquer algorithms give us running-time recurrences of the form

T (n) = a T(n/b) + f (n) (1)

where a and b are constants and f (n) is some other function. There is a simple and general technique
for solving many recurrences in this and similar forms, using a recursion tree. The root of the recursion
tree is a box containing the value f (n); the root has a children, each of which is the root of a (recursively
defined) recursion tree for the function T (n/b).

Equivalently, a recursion tree is a complete a-ary tree where each node at depth i contains the
value f (n/bi). The recursion stops when we get to the base case(s) of the recurrence. Because we’re
only looking for asymptotic bounds, the exact base case doesn’t matter; we can safely assume that
T(1) = Θ(1), or even that T(n) = Θ(1) for all n ≤ 10100. I’ll also assume for simplicity that n is an
integral power of b; we’ll see how to avoid this assumption later (but to summarize: it doesn’t matter).

6

Algorithms Appendix: Solving Recurrences

Now T(n) is just the sum of all values stored in the recursion tree. For each i, the ith level of the
tree contains ai nodes, each with value f (n/bi). Thus,

T (n) =
L
∑

i=0

ai f (n/bi) (Σ)

where L is the depth of the recursion tree. We easily see that L = logb n, because n/bL = 1. The base
case f (1) = Θ(1) implies that the last non-zero term in the summation is Θ(aL) = Θ(alogb n) = Θ(nlogb a).

For most divide-and-conquer recurrences, the level-by-level sum (Σ) is a geometric series—each term
is a constant factor larger or smaller than the previous term. In this case, only the largest term in the
geometric series matters; all of the other terms are swallowed up by the Θ(·) notation.

f(n/b)

f(n)

a

a

f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)
f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)

f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)
f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)

f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)
f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)

f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)
f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)f(n/bL)

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n/b)

a

f(n/b²)f(n/b²)f(n/b²)f(n/b²)

f(n)

a⋅f(n/b)

a²⋅f(n/b²)

aL⋅f(n/bL)

+

+

+

+

A recursion tree for the recurrence T (n) = a T(n/b) + f (n)

Here are several examples of the recursion-tree technique in action:

• Mergesort (simplified): T(n) = 2T(n/2) + n

There are 2i nodes at level i, each with value n/2i , so every term in the level-by-level sum (Σ)
is the same:

T (n) =
L
∑

i=0

n.

The recursion tree has L = log2 n levels, so T(n) = Θ(n logn).

• Randomized selection: T(n) = T(3n/4) + n

The recursion tree is a single path. The node at depth i has value (3/4)in, so the level-by-level
sum (Σ) is a decreasing geometric series:

T (n) =
L
∑

i=0

(3/4)in.

This geometric series is dominated by its initial term n, so T(n) = Θ(n). The recursion tree has
L = log4/3 n levels, but so what?

7

Algorithms Appendix: Solving Recurrences

• Karatsuba’s multiplication algorithm: T(n) = 3T(n/2) + n

There are 3i nodes at depth i, each with value n/2i, so the level-by-level sum (Σ) is an
increasing geometric series:

T (n) =
L
∑

i=0

(3/2)in.

This geometric series is dominated by its final term (3/2)Ln. Each leaf contributes 1 to this term;
thus, the final term is equal to the number of leaves in the tree! The recursion tree has L = log2 n
levels, and therefore 3log2 n = nlog2 3 leaves, so T(n) = Θ(nlog2 3).

• T(n) = 2T(n/2) + n/ lgn

The sum of all the nodes in the ith level is n/(lg n− i). This implies that the depth of the tree
is at most lg n− 1. The level sums are neither constant nor a geometric series, so we just have to
evaluate the overall sum directly.

Recall (or if you’re seeing this for the first time: Behold!) that the nth harmonic number Hn is
the sum of the reciprocals of the first n positive integers:

Hn :=
n
∑

i=1

1

i

It’s nat hard to show that Hn = Θ(log n); in fact, we have the stronger inequalities ln(n+ 1) ≤
Hn ≤ ln n+ 1.

T (n) =
lg n−1
∑

i=0

n

lg n− i
=

lg n
∑

j=1

n

j
= nHlg n =Θ(n lg lgn)

• T(n) = 4T(n/2) + n lgn

There are 4i nodes at each level i, each with value (n/2i) lg(n/2i) = (n/2i)(lg n− i); again,
the depth of the tree is at most lg n− 1. We have the following summation:

T (n) =
lg n−1
∑

i=0

n2i(lg n− i)

We can simplify this sum by substituting j = lg n− i:

T (n) =
lg n
∑

j=i

n2lg n− j j =
lg n
∑

j=i

n2 j/2 j =Θ(j2)

The last step uses the fact that
∑∞

i=1 j/2 j = 2. Although this is not quite a geometric series, it is
still dominated by its largest term.

• Ugly divide and conquer: T(n) =
p

n · T(
p

n) + n

We solved this recurrence earlier by guessing the right answer and verifying, but we can use
recursion trees to get the correct answer directly. The degree of the nodes in the recursion tree is

8

Algorithms Appendix: Solving Recurrences

no longer constant, so we have to be a bit more careful, but the same basic technique still applies.
It’s not hard to see that the nodes in any level sum to n. The depth L satisfies the identity n2−L

= 2
(we can’t get all the way down to 1 by taking square roots), so L = lg lg n and T(n) = Θ(n lg lgn).

• Randomized quicksort: T(n) = T(3n/4) + T(n/4) + n

This recurrence isn’t in the standard form described earlier, but we can still solve it using
recursion trees. Now modes in the same level of the recursion tree have different values, and
different leaves are at different levels. However, the nodes in any complete level (that is, above
any of the leaves) sum to n. Moreover, every leaf in the recursion tree has depth between log4 n
and log4/3 n. To derive an upper bound, we overestimate T(n) by ignoring the base cases and
extending the tree downward to the level of the deepest leaf. Similarly, to derive a lower bound,
we overestimate T(n) by counting only nodes in the tree up to the level of the shallowest leaf.
These observations give us the upper and lower bounds n log4 n≤ T(n)≤ n log4/3 n. Since these
bounds differ by only a constant factor, we have T(n) = Θ(n logn).

• Deterministic selection: T(n) = T(n/5) + T(7n/10) + n

Again, we have a lopsided recursion tree. If we look only at complete levels of the tree, we find
that the level sums form a descending geometric series T (n) = n+9n/10+81n/100+ · · · . We can
get an upper bound by ignoring the base cases entirely and growing the tree out to infinity, and
we can get a lower bound by only counting nodes in complete levels. Either way, the geometric
series is dominated by its largest term, so T(n) = Θ(n).

• Randomized search trees: T(n) =
1
4

T(n/4) +
3
4

T(3n/4) + 1

This looks like a divide-and-conquer recurrence, but what does it mean to have a quarter of
a child? The right approach is to imagine that each node in the recursion tree has a weight in
addition to its value. Alternately, we get a standard recursion tree again if we add a second real
parameter to the recurrence, defining T (n) = T (n, 1), where

T (n,α) = T (n/4,α/4) + T (3n/4,3α/4) +α.

In each complete level of the tree, the (weighted) node values sum to exactly 1. The leaves of the
recursion tree are at different levels, but all between log4 n and log4/3 n. So we have upper and
lower bounds log4 n≤ T (n)≤ log4/3 n, which differ by only a constant factor, so T(n) = Θ(logn).

• Ham-sandwich trees: T(n) = T(n/2) + T(n/4) + 1

Again, we have a lopsided recursion tree. If we only look at complete levels, we find that the
level sums form an ascending geometric series T (n) = 1+ 2+ 4+ · · · , so the solution is dominated
by the number of leaves. The recursion tree has log4 n complete levels, so there are more than
2log4 n = nlog4 2 =

p
n; on the other hand, every leaf has depth at most log2 n, so the total number

of leaves is at most 2log2 n = n. Unfortunately, the crude bounds
p

n� T(n)� n are the best we
can derive using the techniques we know so far!

The following theorem completely describes the solution for any divide-and-conquer recurrence in
the ‘standard form’ T (n) = aT (n/b)+ f (n), where a and b are constants and f (n) is a polynomial. This
theorem allows us to bypass recursion trees for ‘standard’ recurrences, but many people (including Jeff)
find it harder to remember than the more general recursion-tree technique. Your mileage may vary.

9

Algorithms Appendix: Solving Recurrences

The Master Theorem. The recurrence T (n) = aT (n/b) + f (n) can be solved as follows.

• If a f (n/b) = κ f (n) for some constant κ < 1, then T (n) = Θ(f (n)).

• If a f (n/b) = K f (n) for some constant K > 1, then T (n) = Θ(nlogb a).

• If a f (n/b) = f (n), then T (n) = Θ(f (n) logb n).

• If none of these three cases apply, you’re on your own.

Proof: If f (n) is a constant factor larger than a f (b/n), then by induction, the sum is a descending
geometric series. The sum of any geometric series is a constant times its largest term. In this case, the
largest term is the first term f (n).

If f (n) is a constant factor smaller than a f (b/n), then by induction, the sum is an ascending
geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is
the last term, which by our earlier argument is Θ(nlogb a).

Finally, if a f (b/n) = f (n), then by induction, each of the L+1 terms in the sum is equal to f (n). �

4 Linear Recurrences (Annihilators)

Another common class of recurrences, called linear recurrences, arises in the context of recursive
backtracking algorithms and counting problems. These recurrences express each function value f (n) as
a linear combination of a small number of nearby values f (n− 1), f (n− 2), f (n− 3), The Fibonacci
recurrence is a typical example:

F(n) =

0 if n= 0

1 if n= 1

F(n− 1) + F(n− 2) otherwise

It turns out that the solution to any linear recurrence is a simple combination of polynomial and
exponential functions in n. For example, we can verify by induction that the linear recurrence

T (n) =

1 if n= 0

0 if n= 1 or n= 2

3T (n− 1)− 8T (n− 2) + 4T (n− 3) otherwise

has the closed-form solution T(n) = (n − 3)2n + 4. First we check the base cases:

T (0) = (0− 3)20+ 4= 1 Ø

T (1) = (1− 3)21+ 4= 0 Ø

T (2) = (2− 3)22+ 4= 0 Ø

And now the recursive case:

T (n) = 3T (n− 1)− 8T (n− 2) + 4T (n− 3)

= 3((n− 4)2n−1+ 4)− 8((n− 5)2n−2+ 4) + 4((n− 6)2n−3+ 4)

=
�

3

2
−

8

4
+

4

8

�

n · 2n−
�

12

2
−

40

4
+

24

8

�

2n+ (2− 8+ 4) · 4

= (n− 3) · 2n+ 4 Ø

10

Algorithms Appendix: Solving Recurrences

But how could we have possibly come up with that solution? In this section, I’ll describe a general
method for solving linear recurrences that’s arguably easier than the induction proof!

4.1 Operators

Our technique for solving linear recurrences relies on the theory of operators. Operators are higher-order
functions, which take one or more functions as input and produce different functions as output. For
example, your first two semesters of calculus focus almost exclusively on the differential and integral
operators d

d x
and

∫

d x . All the operators we will need are combinations of three elementary building
blocks:

• Sum: (f + g)(n) := f (n) + g(n)

• Scale: (α · f)(n) := α · (f (n))

• Shift: (E f)(n) := f (n+ 1)

The shift and scale operators are linear, which means they can be distributed over sums; for example,
for any functions f , g, and h, we have E(f − 3(g − h)) = E f + (−3)E g + 3Eh.

We can combine these building blocks to obtain more complex compound operators. For example, the
compound operator E − 2 is defined by setting (E − 2) f := E f + (−2) f for any function f . We can also
apply the shift operator twice: (E(E f))(n) = f (n+ 2); we write usually E2 f as a synonym for E(E f).
More generally, for any positive integer k, the operator Ek shifts its argument k times: Ek f (n) = f (n+k).
Similarly, (E − 2)2 is shorthand for the operator (E − 2)(E − 2), which applies (E − 2) twice.

For example, here are the results of applying different operators to the function f (n) = 2n:

2 f (n) = 2 · 2n = 2n+1

3 f (n) = 3 · 2n

E f (n) = 2n+1

E2 f (n) = 2n+2

(E − 2) f (n) = E f (n)− 2 f (n) = 2n+1− 2n+1 = 0

(E2− 1) f (n) = E2 f (n)− f (n) = 2n+2− 2n = 3 · 2n

These compound operators can be manipulated exactly as though they were polynomials over the
‘variable’ E. In particular, we can ‘factor’ compound operators into ‘products’ of simpler operators,
and the order of the factors is unimportant. For example, the compound operators E2 − 3E + 2 and
(E − 1)(E − 2) are equivalent:

Let g(n) := (E − 2) f (n) = f (n+ 1)− 2 f (n).

Then (E − 1)(E − 2) f (n) = (E − 1)g(n)

= g(n+ 1)− g(n)

= (f (n+ 2)− 2 f (n− 1))− (f (n+ 1)− 2 f (n))

= f (n+ 2)− 3 f (n+ 1) + 2 f (n)

= (E2− 3E + 2) f (n). Ø

It is an easy exercise to confirm that E2− 3E + 2 is also equivalent to the operator (E − 2)(E − 1).

11

Algorithms Appendix: Solving Recurrences

The following table summarizes everything we need to remember about operators.

Operator Definition
addition (f + g)(n) := f (n) + g(n)

subtraction (f − g)(n) := f (n)− g(n)
multiplication (α · f)(n) := α · (f (n))

shift E f (n) := f (n+ 1)
k-fold shift Ek f (n) := f (n+ k)

composition (X + Y) f := X f + Y f
(X − Y) f := X f − Y f

XY f := X(Y f) = Y (X f)
distribution X(f + g) = X f + X g

4.2 Annihilators

An annihilator of a function f is any nontrivial operator that transforms f into the zero function. (We
can trivially annihilate any function by multiplying it by zero, so as a technical matter, we do not consider
the zero operator to be an annihilator.) Every compound operator we consider annihilates a specific
class of functions; conversely, every function composed of polynomial and exponential functions has a
unique (minimal) annihilator.

We have already seen that the operator (E − 2) annihilates the function 2n. It’s not hard to see
that the operator (E − c) annihilates the function α · cn, for any constants c and α. More generally, the
operator (E − c) annihilates the function an if and only if c = a:

(E − c)an = Ean− c · an = an+1− c · an = (a− c)an.

Thus, (E − 2) is essentially the only annihilator of the function 2n.
What about the function 2n+ 3n? The operator (E − 2) annihilates the function 2n, but leaves the

function 3n unchanged. Similarly, (E − 3) annihilates 3n while negating the function 2n. But if we apply
both operators, we annihilate both terms:

(E − 2)(2n+ 3n) = E(2n+ 3n)− 2(2n+ 3n)

= (2n+1+ 3n+1)− (2n+1+ 2 · 3n) = 3n

=⇒ (E − 3)(E − 2)(2n+ 3n) = (E − 3)3n = 0

In general, for any integers a 6= b, the operator (E − a)(E − b) = (E − b)(E − a) = (E2− (a+ b)E + ab)
annihilates any function of the form αan+ β bn, but nothing else.

What about the operator (E − a)(E − a) = (E − a)2? It turns out that this operator annihilates all
functions of the form (αn+ β)an:

(E − a)((αn+ β)an) = (α(n+ 1) + β)an+1− a(αn+ β)an

= αan+1

=⇒ (E − a)2((αn+ β)an) = (E − a)(αan+1) = 0

More generally, the operator (E − a)d annihilates all functions of the form p(n) · an, where p(n) is a
polynomial of degree at most d − 1. For example, (E − 1)3 annihilates any polynomial of degree at
most 2.

12

Algorithms Appendix: Solving Recurrences

The following table summarizes everything we need to remember about annihilators.

Operator Functions annihilated
E − 1 α

E − a αan

(E − a)(E − b) αan + β bn [if a 6= b]
(E − a0)(E − a1) · · · (E − ak)

∑k
i=0αia

n
i [if ai distinct]

(E − 1)2 αn+ β
(E − a)2 (αn+ β)an

(E − a)2(E − b) (αn+ β)ab + γbn [if a 6= b]
(E − a)d

�
∑d−1

i=0 αin
i�an

If X annihilates f , then X also annihilates E f .
If X annihilates both f and g, then X also annihilates f ± g.

If X annihilates f , then X also annihilates α f , for any constant α.

If X annihilates f and Y annihilates g, then XY annihilates f ± g.

4.3 Annihilating Recurrences

Given a linear recurrence for a function, it’s easy to extract an annihilator for that function. For many
recurrences, we only need to rewrite the recurrence in operator notation. Once we have an annihilator,
we can factor it into operators of the form (E− c); the table on the previous page then gives us a generic
solution with some unknown coefficients. If we are given explicit base cases, we can determine the
coefficients by examining a few small cases; in general, this involves solving a small system of linear
equations. If the base cases are not specified, the generic solution almost always gives us an asymptotic
solution. Here is the technique step by step:

1. Write the recurrence in operator form
2. Extract an annihilator for the recurrence
3. Factor the annihilator (if necessary)
4. Extract the generic solution from the annihilator
5. Solve for coefficients using base cases (if known)

Here are several examples of the technique in action:

• r (n) = 5r (n − 1), where r (0) = 3.

1. We can write the recurrence in operator form as follows:

r(n) = 5r(n− 1) =⇒ r(n+ 1)− 5r(n) = 0 =⇒ (E − 5)r(n) = 0.

2. We immediately see that (E − 5) annihilates the function r(n).

3. The annihilator (E − 5) is already factored.

4. Consulting the annihilator table on the previous page, we find the generic solution r(n) = α5n

for some constant α.

5. The base case r(0) = 3 implies that α= 3.

13

Algorithms Appendix: Solving Recurrences

We conclude that r (n) = 3 · 5n . We can easily verify this closed-form solution by induction:

r(0) = 3 · 50 = 3 Ø [definition]

r(n) = 5r(n− 1) [definition]

= 5 · (3 · 5n−1) [induction hypothesis]

= 5n · 3 Ø [algebra]

• Fibonacci numbers: F(n) = F(n − 1) + F(n − 2), where F(0) = 0 and F(1) = 1.

1. We can rewrite the recurrence as (E2− E − 1)F(n) = 0.

2. The operator E2− E − 1 clearly annihilates F(n).

3. The quadratic formula implies that the annihilator E2− E − 1 factors into (E −φ)(E − φ̂),
where φ = (1+

p
5)/2≈ 1.618034 is the golden ratio and φ̂ = (1−

p
5)/2 = 1−φ =−1/φ.

4. The annihilator implies that F(n) = αφn + α̂φ̂n for some unknown constants α and α̂.

5. The base cases give us two equations in two unknowns:

F(0) = 0= α+ α̂

F(1) = 1= αφ + α̂φ̂

Solving this system of equations gives us α= 1/(2φ − 1) = 1/
p

5 and α̂=−1/
p

5.

We conclude with the following exact closed form for the nth Fibonacci number:

F(n) =
φn − φ̂n

p
5

=
1
p

5

1+
p

5

2

!n

−
1
p

5

1−
p

5

2

!n

With all the square roots in this formula, it’s quite amazing that Fibonacci numbers are integers.
However, if we do all the math correctly, all the square roots cancel out when i is an integer. (In
fact, this is pretty easy to prove using the binomial theorem.)

• Towers of Hanoi: T(n) = 2T(n − 1) + 1, where T(0) = 0. This is our first example of a
non-homogeneous recurrence, which means the recurrence has one or more non-recursive terms.

1. We can rewrite the recurrence as (E − 2)T (n) = 1.

2. The operator (E − 2) doesn’t quite annihilate the function; it leaves a residue of 1. But we
can annihilate the residue by applying the operator (E − 1). Thus, the compound operator
(E − 1)(E − 2) annihilates the function.

3. The annihilator is already factored.

4. The annihilator table gives us the generic solution T(n) = α2n + β for some unknown
constants α and β .

5. The base cases give us T(0) = 0= α20+ β and T(1) = 1= α21+ β . Solving this system of
equations, we find that α= 1 and β =−1.

We conclude that T(n) = 2n − 1.

14

Algorithms Appendix: Solving Recurrences

For the remaining examples, I won’t explicitly enumerate the steps in the solution.

• Height-balanced trees: H(n) = H(n−1)+H(n−2)+1, where H(−1) = 0 and H(0) = 1. (Yes,
we’re starting at −1 instead of 0. So what?)

We can rewrite the recurrence as (E2− E − 1)H = 1. The residue 1 is annihilated by (E − 1),
so the compound operator (E − 1)(E2− E − 1) annihilates the recurrence. This operator factors
into (E−1)(E−φ)(E− φ̂), where φ = (1+

p
5)/2 and φ̂ = (1−

p
5)/2. Thus, we get the generic

solution H(n) = α ·φn+β + γ · φ̂n, for some unknown constants α, β , γ that satisfy the following
system of equations:

H(−1) = 0= αφ−1+ β + γφ̂−1 = α/φ + β − γ/φ̂

H(0) = 1= αφ0+ β + γφ̂0 = α+ β + γ

H(1) = 2= αφ1+ β + γφ̂1 = αφ + β + γφ̂

Solving this system (using Cramer’s rule or Gaussian elimination), we find that α= (
p

5+ 2)/
p

5,
β =−1, and γ= (

p
5− 2)/

p
5. We conclude that

H(n) =

p
5+ 2
p

5

1+
p

5

2

!n

− 1+

p
5− 2
p

5

1−
p

5

2

!n

.

• T(n) = 3T(n−1)−8T(n−2)+4T(n−3), where T(0) = 1, T(1) = 0, and T(2) = 0. This was
our original example of a linear recurrence.

We can rewrite the recurrence as (E3 − 3E2 + 8E − 4)T = 0, so we immediately have an
annihilator E3 − 3E2 + 8E − 4. Using high-school algebra, we can factor the annihilator into
(E − 2)2(E − 1), which implies the generic solution T(n) = αn2n+β2n+ γ. The constants α, β ,
and γ are determined by the base cases:

T (0) = 1 = α · 0 · 20+ β20+ γ = β + γ

T (1) = 0 = α · 1 · 21+ β21+ γ = 2α+ 2β + γ

T (2) = 0 = α · 2 · 22+ β22+ γ = 8α+ 4β + γ

Solving this system of equations, we find that α = 1, β =−3, and γ = 4, so T(n) = (n− 3)2n + 4.

• T(n) = T(n − 1) + 2T(n − 2) + 2n − n2

We can rewrite the recurrence as (E2− E − 2)T (n) = E2(2n− n2). Notice that we had to shift
up the non-recursive parts of the recurrence when we expressed it in this form. The operator
(E − 2)(E − 1)3 annihilates the residue 2n− n2, and therefore also annihilates the shifted residue
E2(2n+n2). Thus, the operator (E−2)(E−1)3(E2−E−2) annihilates the entire recurrence. We can
factor the quadratic factor into (E−2)(E+1), so the annihilator factors into (E−2)2(E−1)3(E+1).
So the generic solution is T(n) = αn2n +β2n +γn2+δn+ ε+η(−1)n . The coefficients α, β , γ,
δ, ε, η satisfy a system of six equations determined by the first six function values T(0) through
T (5). For almost2 every set of base cases, we have α 6= 0, which implies that T(n) = Θ(n2n).

For a more detailed explanation of the annihilator method, see George Lueker, Some techniques for
solving recurrences, ACM Computing Surveys 12(4):419-436, 1980.

2In fact, the only possible solutions with α= 0 have the form −2n−1 − n2/2− 5n/2+η(−1)n for some constant η.

15

Algorithms Appendix: Solving Recurrences

5 Transformations

Sometimes we encounter recurrences that don’t fit the structures required for recursion trees or annihila-
tors. In many of those cases, we can transform the recurrence into a more familiar form, by defining a
new function in terms of the one we want to solve. There are many different kinds of transformations,
but these three are probably the most useful:

• Domain transformation: Define a new function S(n) = T(f (n)) with a simpler recurrence, for
some simple function f .

• Range transformation: Define a new function S(n) = f (T (n)) with a simpler recurrence, for some
simple function f .

• Difference transformation: Simplify the recurrence for T (n) by considering the difference T (n)−
T (n− 1).

Here are some examples of these transformations in action.

• Unsimplified Mergesort: T(n) = T(dn/2e) + T(bn/2c) +Θ(n)
When n is a power of 2, we can simplify the mergesort recurrence to T (n) = 2T (n/2) +Θ(n),

which has the solution T (n) = Θ(n log n). Unfortunately, for other values values of n, this simplified
recurrence is incorrect. When n is odd, then the recurrence calls for us to sort a fractional number
of elements! Worse yet, if n is not a power of 2, we will never reach the base case T (1) = 1.

So we really need to solve the original recurrence. We have no hope of getting an exact solution,
even if we ignore the Θ() in the recurrence; the floors and ceilings will eventually kill us. But
we can derive a tight asymptotic solution using a domain transformation—we can rewrite the
function T (n) as a nested function S(f (n)), where f (n) is a simple function and the function S()
has an simpler recurrence.

First let’s overestimate the time bound, once by pretending that the two subproblem sizes are
equal, and again to eliminate the ceiling:

T (n)≤ 2T
�

dn/2e
�

+ n≤ 2T (n/2+ 1) + n.

Now we define a new function S(n) = T(n+α), where α is a unknown constant, chosen so that
S(n) satisfies the Master-Theorem-ready recurrence S(n) ≤ 2S(n/2) + O(n). To figure out the
correct value of α, we compare two versions of the recurrence for the function T (n+α):

S(n)≤ 2S(n/2) +O(n) =⇒ T (n+α)≤ 2T (n/2+α) +O(n)

T (n)≤ 2T (n/2+ 1) + n =⇒ T (n+α)≤ 2T ((n+α)/2+ 1) + n+α

For these two recurrences to be equal, we need n/2+α = (n+α)/2+ 1, which implies that α = 2.
The Master Theorem now tells us that S(n) = O(n log n), so

T (n) = S(n− 2) = O((n− 2) log(n− 2)) = O(n log n).

A similar argument implies the matching lower bound T(n) = Ω(n log n). So T(n) = Θ(n logn)
after all, just as though we had ignored the floors and ceilings from the beginning!

Domain transformations are useful for removing floors, ceilings, and lower order terms from
the arguments of any recurrence that otherwise looks like it ought to fit either the Master Theorem
or the recursion tree method. But now that we know this, we don’t need to bother grinding
through the actual gory details!

16

Algorithms Appendix: Solving Recurrences

• Ham-Sandwich Trees: T(n) = T(n/2) + T(n/4) + 1

As we saw earlier, the recursion tree method only gives us the uselessly loose bounds
p

n�
T (n)� n for this recurrence, and the recurrence is in the wrong form for annihilators. The authors
who discovered ham-sandwich trees (yes, this is a real data structure) solved this recurrence by
guessing the solution and giving a complicated induction proof.

But a simple transformation allows us to solve the recurrence in just a few lines. We define
a new function t(k) = T(2k), which satisfies the simpler linear recurrence t(k) = t(k − 1) +
t(k− 2) + 1. This recurrence should immediately remind you of Fibonacci numbers. Sure enough,
the annihilator method implies the solution t(k) = Θ(φk), where φ = (1+

p
5)/2 is the golden

ratio. We conclude that

T (n) = t(lg n) = Θ(φlg n) =Θ(nlgφ)≈Θ(n0.69424).

Many other divide-and-conquer recurrences can be similarly transformed into linear recurrences
and then solved with annihilators. Consider once more the simplified mergesort recurrence
T(n) = 2T(n/2) + n. The function t(k) = T(2k) satisfies the recurrence t(k) = 2t(k− 1) + 2k.
The annihilator method gives us the generic solution t(k) = Θ(k · 2k), which implies that T (n) =
t(lg n) = Θ(n log n), just as we expected.

On the other hand, for some recurrences like T (n) = T (n/3) + T (2n/3) + n, the recursion tree
method gives an easy solution, but there’s no way to transform the recurrence into a form where
we can apply the annihilator method directly.3

• Random Binary Search Trees: T(n) =
1

4
T(n/4) +

3

4
T(3n/4) + 1

This looks like a divide-and-conquer recurrence, so we might be tempted to apply recursion
trees, but what does it mean to have a quarter of a child? If we’re not comfortable with weighted
recursion trees, we can instead consider a new function U(n) = n · T(n), which satisfies the
recurrence U(n) = U(n/4) + U(3n/4) + n. As we’ve already seen, recursion trees imply that
U(n) = Θ(n log n), which immediately implies that T(n) = Θ(logn).

• Randomized Quicksort: T(n) =
2

n

n−1
∑

k=0

T(k) + n

This is our first example of a full history recurrence; each function value T(n) is defined in
terms of all previous function values T(k) with k < n. Before we can apply any of our existing
techniques, we need to convert this recurrence into an equivalent limited history form by shifting
and subtracting away common terms. To make this step slightly easier, we first multiply both sides
of the recurrence by n to get rid of the fractions.

3However, we can still get a solution via functional transformations as follows. The function t(k) = T((3/2)k) satisfies
the recurrence t(n) = t(n− 1) + t(n−λ) + (3/2)k, where λ= log3/2 3= 2.709511 The characteristic function for this
recurrence is (rλ − rλ−1 − 1)(r − 3/2), which has a double root at r = 3/2 and nowhere else. Thus, t(k) = Θ(k(3/2)k), which
implies that T (n) = t(log3/2 n) = Θ(n log n).

17

Algorithms Appendix: Solving Recurrences

n · T (n) = 2
n−1
∑

k=0

T (j) + n2 [multiply both sides by n]

(n− 1) · T (n− 1) = 2
n−2
∑

k=0

T (j) + (n− 1)2 [shift]

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + 2n− 1 [subtract]

T (n) =
n+ 1

n
T (n− 1) + 2−

1

n
[simplify]

We can solve this limited-history recurrence using another functional transformation. We
define a new function t(n) = T (n)/(n+ 1), which satisfies the simpler recurrence

t(n) = t(n− 1) +
2

n+ 1
−

1

n(n+ 1)
,

which we can easily unroll into a summation. If we only want an asymptotic solution, we can
simplify the final recurrence to t(n) = t(n − 1) + Θ(1/n), which unrolls into a very familiar
summation:

t(n) =
n
∑

i=1

Θ(1/i) = Θ(Hn) = Θ(log n).

Finally, substituting T(n) = (n+ 1)t(n) gives us a solution to the original recurrence: T(n) =
Θ(n logn).

18

Algorithms Appendix: Solving Recurrences

Exercises

1. For each of the following recurrences, first guess an exact closed-form solution, and then prove
your guess is correct. You are free to use any method you want to make your guess—unrolling
the recurrence, writing out the first several values, induction proof template, recursion trees,
annihilators, transformations, ‘It looks like that other one’, whatever—but please describe your
method. All functions are from the non-negative integers to the reals. If it simplifies your solutions,
express them in terms of Fibonacci numbers Fn, harmonic numbers Hn, binomial coefficients

�n
k

�

,
factorials n!, and/or the floor and ceiling functions bxc and dxe.

(a) A(n) = A(n− 1) + 1, where A(0) = 0.

(b) B(n) =

(

0 if n< 5

B(n− 5) + 2 otherwise

(c) C(n) = C(n− 1) + 2n− 1, where C(0) = 0.

(d) D(n) = D(n− 1) +
�n

2

�

, where D(0) = 0.

(e) E(n) = E(n− 1) + 2n, where E(0) = 0.

(f) F(n) = 3 · F(n− 1), where F(0) = 1.

(g) G(n) = G(n−1)
G(n−2) , where G(0) = 1 and G(1) = 2. [Hint: This is easier than it looks.]

(h) H(n) = H(n− 1) + 1/n, where H(0) = 0.

(i) I(n) = I(n− 2) + 3/n, where I(0) = I(1) = 0. [Hint: Consider even and odd n separately.]

(j) J(n) = J(n− 1)2, where J(0) = 2.

(k) K(n) = K(bn/2c) + 1, where K(0) = 0.

(l) L(n) = L(n− 1) + L(n− 2), where L(0) = 2 and L(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]

(m) M(n) = M(n− 1) ·M(n− 2), where M(0) = 2 and M(1) = 1.
[Hint: Write the solution in terms of Fibonacci numbers.]

(n) N(n) = 1+
n
∑

k=1
(N(k− 1) + N(n− k)), where N(0) = 1.

(p) P(n) =
n−1
∑

k=0
(k · P(k− 1)), where P(0) = 1.

(q) Q(n) = 1
2−Q(n−1) , where Q(0) = 0.

(r) R(n) = max
1≤k≤n

{R(k− 1) + R(n− k) + n}

(s) S(n) = max
1≤k≤n

{S(k− 1) + S(n− k) + 1}

(t) T (n) = min
1≤k≤n

{T (k− 1) + T (n− k) + n}

(u) U(n) = min
1≤k≤n

{U(k− 1) + U(n− k) + 1}

(v) V (n) = max
n/3≤k≤2n/3

{V (k− 1) + V (n− k) + n}

19

Algorithms Appendix: Solving Recurrences

2. Use recursion trees to solve each of the following recurrences.

(a) A(n) = 2A(n/4) +
p

n

(b) B(n) = 2B(n/4) + n

(c) C(n) = 2C(n/4) + n2

(d) D(n) = 3D(n/3) +
p

n

(e) E(n) = 3E(n/3) + n

(f) F(n) = 3F(n/3) + n2

(g) G(n) = 4G(n/2) +
p

n

(h) H(n) = 4H(n/2) + n

(i) I(n) = 4I(n/2) + n2

(j) J(n) = J(n/2) + J(n/3) + J(n/6) + n

(k) K(n) = K(n/2) + K(n/3) + K(n/6) + n2

(l) L(n) = L(n/15) + L(n/10) + 2L(n/6) +
p

n

(m) M(n) =
p

2n M(
p

2n) +
p

n

(n) N(n) =
p

2n N(
p

2n) + n

(p) P(n) =
p

2n P(
p

2n) + n2

(q) Q(n) =Q(n− 3) + 8n — Don’t use annihilators!

(r) R(n) = 2R(n− 2) + 4n — Don’t use annihilators!

(s) S(n) = 4S(n− 1) + 2n — Don’t use annihilators!

3. Make up a bunch of linear recurrences and then solve them using annihilators.

4. Solve the following recurrences, using any tricks at your disposal.

(a) T (n) =
lg n
∑

i=1

T (n/2i) + n [Hint: Assume n is a power of 2.]

(b) More to come. . .

c© Copyright 2010 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

20

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	Introduction
	The Ultimate Method: Guess and Confirm
	Tower of Hanoi
	Fibonacci numbers
	Mergesort
	An uglier divide-and-conquer example

	Divide and Conquer Recurrences (Recursion Trees)
	Linear Recurrences (Annihilators)
	Operators
	Annihilators
	Annihilating Recurrences

	Transformations

