
CS 473 Homework 6.5 (Practice only) Spring 2010

• This homework is optional. If you choose to submit solutions, we will provide feedback. Choosing
to submit or not submit this homework will have no effect on your overall homework grade.

1. After a grueling algorithms midterm, you decide to take the bus home. Since you planned ahead,
you have a schedule that lists the times and locations of every stop of every bus in Champaign-
Urbana. Unfortunately, there isn’t a single bus that visits both your exam building and your home;
you must transfer between bus lines at least once.

Describe and analyze an algorithm to determine the sequence of bus rides that will get you
home as early as possible, assuming there are b different bus lines, and each bus stops n times per
day. Your goal is to minimize your arrival time, not the time you actually spend traveling. Assume
that the buses run exactly on schedule, that you have an accurate watch, and that you are too
tired to walk between bus stops.

2. Describe an algorithm to compute the minimum spanning tree of an n-vertex planar graph in O(n)
time. [Hint: Contracting an edge in a planar graph yields another planar graph. Any planar graph
with n vertices has at most 3n− 6 edges.]

3. Negative edges cause problems in shortest-path algorithms because of the possibility of negative
cycles. But what if the input graph has no cycles?

(a) Describe an efficient algorithm to compute the shortest path between two nodes s and t
in a given directed acyclic graph with weighted edges. The edge weights could be positive,
negative, or zero.

(b) Describe an efficient algorithm to compute the longest path between two nodes s and t in a
given directed acyclic graph with weighted edges.

[Hint: Consider dynamic programming.]

1



CS 473 Homework 6.5 (Practice only) Spring 2010

?4. Draughts/checkers is a game played on an m×m grid of squares, alternately colored light and
dark. (The game is usually played on an 8× 8 or 10× 10 board, but the rules easily generalize to
any board size.) Each dark square is occupied by at most one game piece (usually called a checker
in the U.S.), which is either black or white; light squares are always empty. One player (‘White’)
moves the white pieces; the other (‘Black’) moves the black pieces.

Consider the following simple version of the game, essentially American checkers or British
draughts, but where every piece is a king.1 Pieces can be moved in any of the four diagonal
directions, either one or two steps at a time. On each turn, a player either moves one of her pieces
one step diagonally into an empty square, or makes a series of jumps with one of her checkers. In a
single jump, a piece moves to an empty square two steps away in any diagonal direction, but only
if the intermediate square is occupied by a piece of the opposite color; this enemy piece is captured
and immediately removed from the board. Multiple jumps are allowed in a single turn as long as
they are made by the same piece. A player wins if her opponent has no pieces left on the board.

Describe an algorithm that correctly determines whether White can capture every black piece,
thereby winning the game, in a single turn. The input consists of the width of the board (m), a list
of positions of white pieces, and a list of positions of black pieces. For full credit, your algorithm
should run in O(n) time, where n is the total number of pieces.

1

5

6

4

8

7

9

2

3

10

11

White wins in one turn.

White cannot win in one turn from either of these positions.

[Hint: The greedy strategy—make arbitrary jumps until you get stuck—does not always find a
winning sequence of jumps even when one exists. You may want to consider Euler tours. Parity,
parity, parity.]

1Most other variants of draughts have ‘flying kings’, which behave very differently than what’s described here.

2


