CS 473

Homework 5 (due March 9, 2010)

Spring 2010

1. A multistack consists of an infinite series of stacks Sy, S1,Ss, ..., where the ith stack S; can hold up
to 3' elements. The user always pushes and pops elements from the smallest stack S,. However,
before any element can be pushed onto any full stack S;, we first pop all the elements off S; and
push them onto stack S;,; to make room. (Thus, if S;; is already full, we first recursively move
all its members to S;,,.) Similarly, before any element can be popped from any empty stack S;,
we first pop 3' elements from S;,; and push them onto S; to make room. (Thus, if S, ; is already
empty, we first recursively fill it by popping elements from S;,,.) Moving a single element from
one stack to another takes O(1) time.

Here is pseudocode for the multistack operations MSPusH and MSPor. The internal stacks are

managed with the subroutines Pusxa and Pop.

MPusH(x) : MPopr(x) :
i—0 i—0
while S; is full while S; is empty
i—i+1 i—i+1
whilei >0 whilei >0
i—i—1 i—i—1
for j < 1 to 3! for j < 1 to 3
PusH(S; 1, Por(S;)) PusH(S;, Por(S;41))
PusH(S,, x) return Por(S,)

x3

IIIIIIIIIIIIIIIIIIIIIIIIIIII<—X‘°)

1] — SHER-- ?ﬁ

Making room in a multistack, just before pushing on a new element.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that if the user never pops anything from the multistack, the amortized cost of a push
operation is O(logn), where n is the maximum number of elements in the multistack during
its lifetime.

(c) Prove that in any intermixed sequence of pushes and pops, each push or pop operation takes
O(logn) amortized time, where n is the maximum number of elements in the multistack
during its lifetime.

CS 473 Homework 5 (due March 9, 2010) Spring 2010

2. Design and analyze a simple data structure that maintains a list of integers and supports the

following operations.

e CrEATE() creates and returns a new list

e PusH(L, x) appends x to the end of L

e Popr(L) deletes the last entry of L and returns it

e Lookupr(L, k) returns the kth entry of L
Your solution may use these primitive data structures: arrays, balanced binary search trees, heaps,
queues, single or doubly linked lists, and stacks. If your algorithm uses anything fancier, you must
give an explicit implementation. Your data structure must support all operations in amortized

constant time. In addition, your data structure must support each Lookup in worst-case O(1) time.
At all times, the size of your data structure must be linear in the number of objects it stores.

CS 473 Homework 5 (due March 9, 2010) Spring 2010

3. Let P be a set of n points in the plane. The staircase of P is the set of all points in the plane that

have at least one point in P both above and to the right.

@

(b)

(©

A4

A set of points in the plane and its staircase (shaded).

Describe an algorithm to compute a representation of the staircase of a set of n points in
O(nlogn) time.

Describe and analyze a data structure that stores the staircase of a set of points, and an
algorithm ABovEe?(x, y) that returns TRUE if the point (x, y) is above the staircase, or FALSE
otherwise. Your data structure should use O(n) space, and your ABovE? algorithm should
run in O(logn) time.

e

TRUE
o

FALSE
o

Two staircase queries.

Describe and analyze a data structure that maintains a staircase as new points are inserted.
Specifically, your data structure should support a function INSERT(x, y) that adds the point
(x, y) to the underlying point set and returns TRUE or FALSE to indicate whether the staircase
of the set has changed. Your data structure should use O(n) space, and your INSERT algorithm
should run in O(logn) amortized time.

- -

®
FALSE!

Two staircase insertions.

