
CS 473 Homework 1 (due February 2, 2009) Spring 2010

• For this and all future homeworks, groups of up to three students can submit (or present) a single
common solution. Please remember to write the names of all group members on every page.

• Please fill out the online input survey linked from the course web page no later than Thurs-
day, January 28. Among other things, this survey asks you to identify the other members of your
HW1 group, so that we can partition the class into presentation clusters without breaking up your
group. We will announce the presentation clusters on Friday, January 29.

• Students in Cluster 1 will present their solutions to Jeff or one of the TAs, on Tuesday or
Wednesday of the due date (February 2 or February 3), instead of submitting written solutions.
Each homework group in Cluster 1 must sign up for a 30-minute time slot no later than
Monday, February 1. Signup sheets will be posted at 3303 Siebel Center (‘The Theory Lab’) later
this week. Please see the course web page for more details.

1. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively subdivides
the points as follows. First we split the box into two smaller boxes with a vertical line, then we
split each of those boxes with horizontal lines, and so on, always alternating between horizontal
and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior
points as evenly as possible by passing through a median point in the interior of the box (not on its
boundary). If a box doesn’t contain any points, we don’t split it any more; these final empty boxes
are called cells.

A kd-tree for 15 points. The dashed line crosses the four shaded cells.

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function of n?
Prove your answer is correct. Assume that n= 2k − 1 for some integer k.

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm that counts
the number of points above a horizontal line (such as the dashed line in the figure) as quickly
as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n points, the
number of points that lie inside a rectangle R with horizontal and vertical sides. [Hint: Use
part (c).]

1



CS 473 Homework 1 (due February 2, 2009) Spring 2010

2. Most graphics hardware includes support for a low-level operation called blit, or block transfer,
which quickly copies a rectangular chunk of a pixel map (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library function
memcpy().

Suppose we want to rotate an n×n pixel map 90◦ clockwise. One way to do this, at least when
n is a power of two, is to split the pixel map into four n/2× n/2 blocks, move each block to its
proper position using a sequence of five blits, and then recursively rotate each block. Alternately,
we could first recursively rotate the blocks and then blit them into place.

A B
C D

C A
D B

C A
D B

recurse

blit ×
 5

A B
C D

recurse

blit ×
 5

Two algorithms for rotating a pixel map.
Solid arrows indicate blitting the blocks into place; hollow arrows indicate recursively rotating the blocks.

The first rotation algorithm (blit then recurse) in action.

(a) Prove that both versions of the algorithm are correct when n is a power of two.

(b) Exactly how many blits does the algorithm perform when n is a power of two?

(c) Describe briefly how to modify the algorithm so that it works for arbitrary n, not just powers
of two. Pseudocode is not required. How many blits does your modified algorithm perform?

(d) What is your algorithm’s running time if a k× k blit takes O(k2) time?

(e) What if a k× k blit takes only O(k) time?

2



CS 473 Homework 1 (due February 2, 2009) Spring 2010

3. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a given
binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

3


