LECTURE S ( SEPTEMBER 9%")

Dynamic Prograrnm[ng— sn Trees A DAGs

—_—

We wull wrap up J:alkl'ng’ about c{yham:'c Programw‘nbo -l:ddq] |

We will see some examples \where -the memoieation structove IS not a table .
This s o veirfovce the Pot}st tat dypamic /arag'mmm[:g:f IS not abovr ft?l/hg
tables bot about Smark recuvsion

Mayimum l'r\depe,nole,nb Set Problem

Gwen o grth G, find a set @Cvew:l‘ce_r cuch that Hheve (s no edéfes
between them and fhe set ic as Zarge as Passc'blc

eg. @ form an Lhcl@/)emdehi- set

Jhs is an NP-hard problem , so we are hot goﬁigy 15 be able o give an
efficient alporithm for this problem.

But theve ave rnah/l/ kinds of graf)h.s wheve this Problcm LS easy , €-g. trees

_ﬁ'cﬁrs ave wnhecﬁe_d gYaF}LS that OIO not 77a\/e ary C/C/QS

N\
AW

!

When we think about Hynarnic progmmming , We want o fod a fecurswe
Strocture [n some Prob(emy.

T an array or a Seguence, this s a bt shalphtformard | bot what abovt
trees? Heve theve (s ho obviow vecorsive chruckre and we ave Jus{; —Ixyihg—
+o ffnd a set

We can impose a vecotsive Structure on the tree by rooting it — choose
a designafeal veréex as the root and Jirecé[ng all of Hhe edpres érol:hé?’

away  from e rvoot. Then, we can draw the tree from JaoF to bottom
where. —he 'EOF s the root.

/



QY") voot
Rm"t ? can be drawn as J\
VAN

5

E\/er/ hode has ?oin-!:en; to it's Chl.)ch’eh new and eveay hode e-Xcej?f the yoot
has a« favem';_

A rosted Yree has aq fecursive shuctore we can use | e,

vooted tree = nhode + CSe_‘t of vooteo| trees

Y

COO’d Le @71/0‘9/

T design o vecorsive algotithm, Ne need o make ome soft of decdsion abovt
the root , ask the recorsion 300))')/ 4o handle the - subtrees, and assemble
the answer based on what +e recorsion falry tells me.

So, Lni—u.'h‘vel): , O YeLorsive &ob}woblem here s a sobtree which we cap ;'c(cnh}}»

with b oot  (.e, ,we cah say that we ook at “his subtree vooted at ths
particwlar node

o my job

— |
L—  vyecy7rsion ﬁn‘y's /ob

For the maximom indefendent sel, the clueskl‘an abovt 4he oot wo want fo answer
is whether & s in the maximum t'ndefendent seft o not. But Since we do hot
know dhes , we il just do what we have beer do[ngf Treufo(uju — assume (t

is and sghe o Yewm've/}/ and assuvme s not and splve recurs[velj anhd then
see which solution s b:‘gger

Assome. that +he veot s not in the l'r\defenc(ent set and we have (ncluded some
children of the voot tn the Lﬂd&fe’ldeht set chown as

voot
SuFPose wWe veclrse J\
T
here , then we carnot
incwde & jn 4he an&])&hdert é/\é

sef as we (ncluded +the Parent

So, theve is some informabon we rneed +o remember from “poct decisions (n
the vecovsive calls



How should we describe  the SOL}’fobIem that we qve Sclvt'ne/ 7
We. heed on ad C(ILUO)‘\GJ. blt , let’s de‘fl‘ne

(LS (v,p) = size of larpest l'ndefae_hdenl' set . a Subtree
vooled at v where y must be excludecd/ from
the indeioehcle/ﬂ: set f p=bue

What's the {of leve[ of the vecu7rsion 7

Is L1S ( yoot, FALSE ) o7 LES( rook , TRUE) 7
— -

—~

L It's th's one | FAISE jusk says that oot (s
not excloded but d= may or may not be in
the mcle?enalebt set

TRe easiest way to think qbout this s in -terms of two se)oqrqte
functions LTS Croot, FALsE) and LIS (veot, TRUE)

and we want to
comfui:e LTS (v, TRUE)
e, V (s excluded

In this case, the children of Vv ave not excluded

The. }Dl'oﬁ)re, we have s

so, LIs (v, TRUE) = 2 LTS (w, FALSE)

w child of v

b

Sl'milaﬁy ih the second case

we know that v is nob excluded >}
bot don't know § o is included

We b/Y both )pogsibl‘h‘ﬁef —fV ‘

is included or net and take the maximom

LTs (v, FALSE ) = wmax { > ,ALIS (w, FALSE) , 1+ ZLISGw,T)}

W chil V chi'ld
of N
-— -
v nok incluckd—1 v induded ih ind. set
m i(d. set w not ncluded

What o5 the base case 7 When +he dree is a leaf , the eXfre_ssbn above.
shll make sehse Since if theve ave no childven , e Summation over

chldves s zero and we get the woht Hhing.



Now, we have a vecorrence bot we stll want 1o avod c’oihcfr 1e]9ea7':€4 work |
<o we want 4o memorze this j?mcifon <ome. how

What data Struckore should we vse ©

We heed a data strcture +ot takes as Cnpot a hode ¢ the
tree anhd. vetovns an ih%tgcr.

We cap use. oo 2D awa); ]%-( Lnsta hce.
Jertex

: T

bot defending sn how the bee is reFYe-sen-(:eoQ , e may hot- be oqs
b wrte | this array . For eXansr)e , f each node in the tree only has
rOffﬂ:ers to each ¢Childven bok not a node i So , whert do we do ?

ITf the tree s Tepresented in an aab'ace,nc/ Let

O ) A ™ Then y, we can assume that the hode
— childven of v = the fnde;( in the C{'(rqy to the (gcé
armyo—f
vettices

Bub not all trees ave vepreented as 4cUaCency lists , sometimes we onl7 have
Poz'h{-e»’s o the childven . What should we do ?

Ohe /aassd»'l@ s o do a }Dfe-order traveveal ahd stove the vertex vecord
in the  hash {gble

Anhorther ?osst'Ll'[/t-/l/ is to asome that we have e Ca]ub/'h'y fo add new infpymaton
o the data ctructwe itself. For example, we can add ne fields in the vecord
for each node “w. fothidden” and "v. allowed '’ that store the walves We need .
So, the memoization data stuctue is the dree (,-l;:@_bf IF we don't hque
this abiu'ﬂ/ , e @n crepke O pew tree datt ctuctoe o Store the onginal dree
where e can add new felds as wel(

The last ‘Hving wWe reed (s the evgluation OYc(er! Let's think dbout Hhe ')’Unm\nf—
tme o figure ths out



LIs (v, TRUE) = 2. LTS (w, FALSE)
w child of v
LTs (v, FALSE) = max § 2 . Lis(w,PALSE) | 1+ 2 LIS(w T)}
W child ) M child /
of v}

of v
S =0 if v is a leaf

W

What s the whning time 2 Now each of the vewysive alls (ook op
ih 0U) tme the valves they heed i the data struetove . We onl/

heed to look ak LIS (w, TKUtT:) once wheh we are comfu‘h‘nﬁ

LLs (Paventéw), FALSE) . Sfmthr)y/ we only peed to [ook up
LLs ( w, FALSE) twice once while cOm)?ul:fngf LI.S(Pareni(uﬂ,‘DaUE)
and LIs (parent W), FALSE) . Each these thvee recovgve calls /vq/a/aen

Once ﬁf Z;tcl\ hode, <o ~the —otal number of HimeS we heed to read
/from +the memoizatim Structore is thvee Hmes H4he nomber of hodes.

Se, we
£ 3 Hmes 7>ev node
<

vorn ~the metoization strvcture
2 timeg ?er Nodé

veaqd
to -the memoization styvcture

WYL‘{TE
for each hoade v, 4o compute 4he som h the recureence, we Wi/
have. « ﬁf {ooP over —the C—hﬂc{)’eh Jf v and n each jl’m/ IOO}D we.
are. pohg” 1o read) from the memoization Styucture .

write

g/ o be 0OQ) 7er node which

The +total omount of -time s gon
absovbs the overhead of vead/wnte/for foops/ max ,ctc.

So, overdll yoming time  O(h) provided that we evaluate thinps in
the correct ovder. Ag’a}n theve are seveval 07::1,1'0)1:

— Revevze level ovdey
—  yecommended because -this nachal//v COfre_g];ondS to

— }ao_c{order’
the natvral recursion on the tree . Also/ becayse.
?O&l—— orde'\( )?S the naﬁ)Ya/ OLI'l;'COmc Of‘ de/)%-ﬁfsi‘
SCQY(‘B

So, the overal a/foﬂ.‘lj)m Jooks ke

At each nocle v In )oasl'—order
compute LIS(v, *) from LIS (w, 4D or chldven w



The vewtSve a,lgoff—me does the depth-first search aleady, <o -the
only hinp- we heed +o do btfore we vetvrn Ffrom the vecowsive call
jQr Vv s 4o wrte LIS (v, TRUE) ancd LISCv, FHSE) (n our data
structure . “lhen, the pavent call and setieve those valves and we wil)

hot heed Hem cg‘terwayctg_

So, how you m{g‘hi— realize. that we don’t need 6 wiite “thase o values
down Since e are nhot goig™ 4o heed them excepi- for the pavent . Se

We can jusé return the two walves 4o the Pavesnt yecursive call . Ss, What
Wwe can do for dynqm;'c Pro(fmmmfntso' Over trees where the evglvation

ovder (< FOS’C-OW(QY s the —ﬁallavdihg— eczufvafen-l: ‘H\fnécy

LIS (W) vetuvns both valoes LIS (v,FALSE) A LISV, TRUE)

and the pavent call can combire these vales to compute s veturn values
Se, we have three different (mplementations here
[J  Dynamic FfogYarnmihé)— With o +able yia Posf—o»'der
[4  Menoized recorsion
[3 Recorsion vetorns motkiple values
Running 4ime s OCh)  for all of them <o you can use any of them
This s dz‘ﬁ@ent han array based DP alguﬂ"b‘)m_c we. saw In /DYQUI.OU_g'
lecture  because. *here filling- the tables corvectly simplfies e algorrthn
and also makes rt faster ; bot when you ave clea/l'ng' With tyees ov DAGs

We aan't vedlly avoid the vecowsion, so etther of the above three options
Wi | Yough}y be e-%u:'vq’enf.

Let's emphasze one aspect of his a’go'r;tbm — that e thine
—that tes all the imf)emcrrt'aﬂbng Jcogc-t/ver LS deﬁh,firsf search

Bw defﬂv-f;rst search \Works for other gra/ohs as well
Memoized yecorsion v a’eFth-ﬁr\s-(: seqrch — how o ‘l'he/v c_om}ure?
As long' os the 73a-);tem af de/?@.hdencia; between +he vecurgive

calls is a dérected acyclic graph, memoized recusion & cfe/)%-ﬁrﬁ
seavch are the same



let's say we pass th Some EhFU’c X to @ veCovsve Subvoutine
cglled fmemoize and we want o record 4he valve h an ara

valve [£] . We will invoke the vecovsive _cub]Drolgl-e,ms v ﬂ,ﬂd based
on the valbe that we pet from those calls, we Wl com)ovte valve [x]
and theh reton -+he valve.

MEMOIZE(X) :
if value[ x ] is undefined
initialize value|[ x ]

for all subproblems y of x
MEMO1ZE(Y)
update value[ x ] based on value[ y ]

finalize value[ x ]

Here ts how defih —ﬁrst seavch wotks on a geneml alag

) InH:I‘aHy all verbices ave unmavked , and the first Hme we vt
a vertex we mark 2. \Ne do some Comyu%:rf{fon at —that hode
that we call previsit and +heh ~ecovsively do DFS on each
svecessor of v, fol(owed 17 Some }Das%fYoce.ssinBO' Josﬁv:‘.g,'-[;(x)
We mark the verticec go that we der't do the Ve/oeak Work if-
we refch the €ame vertex again.

DFS(v):

if v is unmarked
mark v
PREViISIT(X)

for all edges v—w
DFS(w)

PosTVisIiT(x)

Consider a DAG where +he nodes dve the reconive &l)b})mb/ems "
memoization ,then DFS on his DAG ic egquivdlent to memoization

DFES sl wotks even [f gfa)?h i hot o DAG , but 5 not
QcZuivaIeh'l: to memoization if- gfa}:h IS not a DAG

Similarly if we look ab d/«/nqm;‘c ongramming



DYNAMICPROGRAMMING(G) :
for all subproblems x in postorder
initialize value[ x ]
for all subproblems y of x
update value[ x | based on value|[ y |
finalize value[ x ]

it aga?n ends up Lel'ngf a }Do\vl;—ovder Lraversal af the ém"q/ﬁh
wheve we ypdate the “valve ih that order , But Post-ovdle

LS de_][ihed I terms of DFS . Port- ovder is the sume as revere
toyologl‘cal £0vt order

Fov examﬂe H the DAG is

S
AN o
then the. ovder (n D? s n‘g’h{- {o left .

Eov examyle, consider —the Stnhg— c))[f%bl‘ng ‘Pmb\em as a DAG,

G has @ hode :fof each chﬁx/inc{ex C
It has an edge = |wheve_ i<y
and the graph looks like

Each of the edges here reFresem‘, a recordive. cqall tn the
string gPlH?Lln £ }Dvobiﬂm

“This 1< just @ ancrtve toutnament we Saw th HWO.

So, when we are memorzino th's thto ah aray = wWe con
denttfy each node with “rts posrtion ch 4hé Bpolopital
ovdey’ and uyda%e the. awq/ th  reverse —bofoloéa)‘c order

To give ahother example, let's take e lonecest l\nC\/&QS)‘nﬂﬁ—
8 \
subsequehce J:)ro)olem. Ohe of the WAYS e :,Q)fmu}avl:ed It

e
ITsCi) = length of (IS of AlL-—h) including AL



Again  the Cfeyehdehc/u grc(f)? will have  pode for every ¢

but he ecfgus ave’ orly £hose ihdices j>i where AEﬂ?zfﬂ']

sinte. thase are he recurove gubfrdb)erns we. consider

TS S

Alel 3 1 4 1 5

Any path in this graph I an increaghe Subsequence

So , another way of sohwne” LTs is 4o find the /ohéﬂeﬁ ]’Ql%
‘n 4his DAG Which can alss be solved wiHh DFS

Re ponchline here is that Seguence d
{inding- an oyt:‘mal Jvaﬁ\ h a DAG

I s easer ]%f you to think of this Wy, feel Sfree — erther one

NS f:'ne

yh amic Prodcrmmmfygo’ LS

More otnevally if we want o compute the (onpest ath in
a DAG fvom "o Ssource hode to dnothor node ¢, heve s «a
dynamic Frogramml‘ng Aformy/ation

LLP(v) 0 ifv=t,
V)=
max {6(v—>w) + LLP(w) { VoW E E} otherwise,

— v is a sihk

and V +t

I the undev)ying gra)oh s hot a DAG, we Wil get stick m a

lsop, so this doeth't work \f -the ngFJw lc hot @ DAG
whieh jc NP-hard anyway

Heve s @ Pse,uolocoale description of the algovﬂ:hm :

LONGESTPATH(V, t):

You can JUS-E

fv=t invoke —this

return 0 Svbrovthe g
if v.LLP is undefined a block -box

V.LLP « —00 fov HW/exams

for each edge v—w

v.LLP <« max {v.LLP, ((v—w) + LONGESTPATH(W, t)}
return v.LLP

Running Tme = O (VI + IE])

©,



