
#ECTURES (SEPTEMBER (th

~namic Programming on Trees & DAGs

We will wrap up talking about dynamic programming today
We will see some examples where the memorization structure is not a table .

#his is to reinforce the point that dynamic programming is not about filling
tables but about smart recursion

#MaximumIndependent Set Problem

Given a graph G
, find a set of vertices such that there is no edges

between them and the set is as large as possible

e
.g. form an independent set

#
This is an NP-hard problem ,

so we are not going to be able to give an
efficient algorithm for this problem .

But there are many kinds of graphs where this problem is easy , e. g .

trees

Trees are connected graphs that do not have any cycles-

%
G

o
When we think about dynamic programming . We want to find a recursive

structure in some problems .

In an array or a sequence , this is a bit straightforward , but what about
trees ? Here there is no obvious recursive structure and we are just trying
to find a set

.

We can impose a recursive structure on the tree by rooting it - choose
a designated vertex as the root , and directing all of the edges going
away from the root. Then

, we can draw the tree from top to bottom ,

where the top is the root .

①

&
NI root
G

·
can be drawn asofO

Every node has pointers to it's children now and every node except the root
has a parent.

A rooted tree has a recursive structure we can use ,
i
.e.,

rooted tree = node+of rooted trees

could be empty

To design a recursive algorithin , we need to make some sort of decision about
the root

,
ask the recursion fairy to handle the subtrees, and assemble

the answer based on what the recursion fairy tells me.

So
, intuitively , a recursive subproblem here is a subtree which we can identify

with its root
,
i . ee, we can say that we look at this subtree rooted at this

particular node

#i
e

Fairy's job

For the maximum independent set, the question about the root we want to answer
is whether it is in the maximum independent set or not. But since we do not
know this

,
we will just do what we have been doing previously-assume it

is and solve it recursively and assume it is not and solve recursively and then
see which solution is bigger

Assume that the root is not in the independent set and we have included some

children of the root in the independent set shown as

&
↑suppose we recorse -

here then we cannot O

include it in the independent of to
set as we included the parent
So

,
there is some information we need to remember from past decisions in

the recursive calls ②

How should we describe the subproblem that we are solving ?

We need an additional bit
,
let's define

LIS (v , p) = size of largest independent set in a subtree

rooted at ~ wherer must be excluded from
the independent set if p= true

What's the top level of the recursion ?

Is it LIS(root , FALSE) or LIS(root ,TRUE) ?
-

4 It's this one ! FALSE just says that root is
not excluded but it may or may not be in

the independent set

The easiest way
to think about this is in terms of two separate

functionsLIS(root, FALSE) and LIS (root
, TRUE)

The picture we have is and we want to& compute LIS Cr , TRUE
i. e
.,
U is excluded

In this case
,
the children of are not excluded

So
,
LIS (

, TRUE) = 9 LIS(We FALSE)
w child of y

Similarly in the second case vo ?

we know thatI is not excludedbut don't know if it is included
We try both possibilities - if s
is included or not and take the Maximum

LIS(V
,
FALSE) = max & Schild LIS(w , FALSE) . 1+ SILIS(w,T)}↓ child

of u of
- -

~ not included- ~ included in ind. set

in inc
.
Set ~ not included

What is the base case ? When the tree is a leaf , the expression above
still make sense since if there are no children

,
the summation over

children is zero and we get the right thing .

③

Now
,
we have a recurrence but we still want to avoid doing repeated work ,

so we want to memoize this function somehow

What data structure should we use ?

We need a data structure that takes as input a mode in the

tree and returns an integer .

We can use a 2D array for instance

#ver,111]
but depending on how the tree is represented , it may not be easy
to write in this array ↑

For example , if each node in the tree only has

pointers to each children but not a node id
.

So
,
what do we do ?

If the tree is represented in an adjacency list

r
Then , we can assume that the node id

children of u is the index in the array to the left

array of
vertices

But not all trees are represented as adjacency lists , sometimes we only have
pointers to the children. What should we do ?

One possibility is to do a pre-order traversal and store the vertex record
in the hashtable

Another possibility is to assume that we have the capability to add new information
to the data structure itself. For example , we can add new fields in the record

1

for each mode v . Forbidden" and "v .
allowed" that store the values we need .

So
,
the memorization data structure is the tree itself. If we don't have

this ability , we can create a new tree data structure to store the original tree
where we can add new fields as well .

The last thing we need is the evaluation order ! Let's think about the running
time to figure this out

④

LIS(
, TRUE) = 9 LIS(We FALSE)

w child of y

LES(v
,
FALSE) = max[SLIS (w , FALSE) . ItSGT

of u of

S = 0 if v is a leaf

What is the running time ? Now each of the recursive calls look up
in OC1) time the values they need in the data structure. We only
need to look at LIS (W

,
TRUE) once when we are computing

LEs (parent(w) , FALSE) . Similarly, we only need to look up
LIS (w , FALSE) twice once While computing LIS (parent(w) ,TRUE)
and LIS (parent(w) , FALSET ·

Each of these three recursive calls happen
Once for each mode

,
so the total number of times we need to read

from the memorization structure is three times the number of nodes .

Sa
,
we

read from the memorization structure
- 3 times per mode

Write to the memorization structure - 2 times per mode

For each node v
,
to compute the sun in the recurrence

,
we will

have a for loop over the children of u and in each for loop we
are going toread from the memoization structuree

The total amount of time is going to be 021) per node which
absorbs the overhead of read/write/for loops/max , etc .

So
,
overall running time O(n) provided that we evaluate things in/

the correct order. Again there are several options

- Reverse level order
- postorder+ recommended because this naturally corresponds to

the natural recursion on the tree
.
Also
,
because

post-order is the natural outcome of depth-first
search

So
,
the overall algorithm looks like

At each node v in post-order
computeLIS(v, 8) from LIS (w , d) for children w

⑤

The recursive algorithm does the depth-first search already , so the
only thing we need to do before we return from the recursive call

for r is to write LIS(v , TRUE) and LIS(V, FALSE) in our data
structure. Then

,
the parent call and retrieve those values and we will

not need them afterwards .

So, now you night realize that we don't need to write these two values
down since we are not going to need them except for the parent. So
We can just return the two values to the parent recursive call . So, what

We can do for dynamic programming over trees where the evaluation
order is post-order is the following equivalent thing

LIS(v) returns both values LIS(V
, FALSE) & LIS(V , TRUE)

and the parent call can combine these values to compute its return values

So , we have three different implementations here

* Dynamic programming with a table via post-order

& Memorized recursion

= Recursion returns multiple values

Running time is OCD) for all of them , so you can use any of them

This is different than array based DP algorithms we saw in previous
lecture because there filling the tables correctly simplifies the algorithm
and also makes it faster , but when you are dealing with trees or DAGs

We can't really avoid the recursion , so either of the above three options
will roughly be equivalent .

Let's emphasize one aspect of this algorithm - that the thing
that ties all the implementations together is depth-first search .

But depth-first search works for other graphs as well

Memorized recursion vs depth-first search - how do they compare ?

As long as the pattern of dependencies between the recursive

calls is a directed acyclic graph , memorized recursion & depth-first
search are the same

.

⑤

Let's say we pass
in some input x to a recursive subroutine

called menoize and we want to record the value in an array
Yalre[x] .

We will invoke the recursive subproblems y and based
on the value that we get from those calls

,
we will compute value (x)

and then return the value .

Here is how depth-first search works on a general dag

↑ Initially all vertices are unmarked
,
and the first time we visit

a vertex we mark it. We do some computation at that node
that we call previsit and then recursively do DFS on each
successor of v , followed by some postprocessing postrisit(x)
We mark the vertices so that we don't do the repeated work if
We reach the same vertex again .

Consider a DAG where the nodes are the recursive subproblems in

memorization
,
then DES on this DAG is equivalent to memorization

DFS still works even if graph is not a DAG , but it's not
equivalent to memorization if graph is not a DAG

Similarly if we look at dynamic programming

⑦

it again ends up being a post-order traversal of the graph
where we update the value in that order. But post-order
is defined in terms of DFS. Post-order is the same as reverse

topological sort order.

For example if the DAG is

·
then the order in DP is right to left .

For example , consider the string splitting problem as a DAG
.

6 has a node for each prefix/index i
It has an edge i tj where isj
and the graph looks like

At -----

Each of the edges here represent a recursive call in the
string splitting problem

This is just a transitive tournament we saw inWo

So , when we are memoizing this into an array , we can
identify each node with its position in the topological
order and update the array in reverse topological order

To give another example, Let's take the longest increasing
subsequence problem. One of the ways we formulated it
Was

LIS(i) =Length of LIS of Ali - ---n) including All]

⑧

Again the dependency graph will have node for every i
but the edges are only those indices j > i where Aj]Afi]
since those are the recursive subproblems we consider

O o-0 =O

A/i] 3 19 15

Any path in this graph is an increasing subsequence
So

,

another way of solving LIS is to find the longest path
in this DAG which can also be solved with DFS

The punchline here is that sequence dynamic programming is
finding an optimal path in a DAG

it's easier for you to think of this way, feel free-either one
is fine

More generally if we want to compute the longest path in
a DAG from a source mode to another node here is a

dynamic programming formulation

- o if y is a sink

and u ++

If the underlying graph is not a DAG
,
we will get stock in a

loop , so this doesn't work if the graph is not a DAG

which is NP-hard anyway
Here is a pseudocode description of the algorithm :

You can just
invoke this

subroutine as

a black-box

for HW/exams

Running Time = 0 ((VI + IE)) ⑨

