
LECTURE 21 (November 13th (

More Approximation Algorithms

Set Cover & Randomized Roundin

Set cover Problem Let U be a universe ofi elements

Let S
....... S-U be a family of subsets of u

with associated costs < ... -- an

Gal : Pick a minimum cost set cover of 11

-

↳ collection of sets such that
there union equals U

#ote This generalizes the vertex cover problem ,

since

1 = Se...... e 3 are the edges of the graph

S = Selle is incident on vertex a 3

Set cover is also NP-hard
,
but we will see an approximation

algorithm for it , with O(logn) approximation , using a LP
relaxation.

Integer Linear Programming Formulation

minixi
S.- &X: 31 full (every element is covered]

: LEL)

xi 50 , 73 i= 1
,...

171 Xi =
I set i is included

E
O set i is not included

↳relaxation

177

min Ecixi
i=1

S .

t. [xi31 fuer
i= nEl

02Xi = 1 i = 1 .-11

①

First
,

let us see what approximation we can obtain by using
a deterministic rounding scheme analogous to vertex cover

.

LetF be the maximum frequency of any element , i. e.,
maximum number of subsets any element appears in.

First we solve the LP to obtain a fractional solution x *
Note that the LP objective value

Opt
*
= Six

satisfies that OPT* OPT where OPT is the cost of

optimal set cover.

Then
,
we round it as follows

X = Stif Xi*

Then
,

X = (11 - -- X) is an integral solution that gives a
set cover.

Moreover
, cost of this set cover is

COPT1]cxi - Fix = Fop

Thus
,
this set cover is an F- approximation .

For vertex cover , F = 2
,
so we obtained a 2-approximation

butF can be m in general , in which the approximation is

trivial as the same can be achieved by including all subsets
S
,...., Si in the cover

.

To obtain a much better approximation , we will use a randomized
algorithm for rounding .

Randomized Rounding for Set Cover

⑦ solve the LP relaxation and obtain a fractional solution x"as before.

->
this will be our rounded integral

solution xi
& For each i = 1

,
... me round 1 with probability xi

+

Lie. include set S; with probability x:*

⑤ Repeate until all elements are covered.

②

The intuition behind this is that the higher the xi* value in the LP solution

the higher probability of picking this set.

The above algorithm is harder to analyze so we consider a small

variant :

⑦ solve the LP relaxation and obtain a fractional solution x"as before.

->
this will be our rounded integral

② Repeat logn + 2 times : solution xi
For each i = 1

,
... me round 1 with probability xi

+

Lie. include set S; with probability x:*
* If the final integral solution does not cover all elements or cost is

more than (410gn + 8) factor of the LP solution
, repeat

To analyze this algorithm , let's see the cost of a single rounding step in

Let Yi : 2 ifSi
is picked This is arandom variableo

After Step & finishes , y = 1Y , Ym) be the integral solution

Then Elvi] =Sitti) =cix = opt

So
,
the expected cost of the solution is exactly the LP objective value op+

*

Over all the logn + 2 iterations
,
the expected cost = Clog n +2) · OPT

*

By Markov's inequality , with probability, the cost of the final integral
solution is <Klogn +8) · OpT

*

What is the probability that this integral solution is not a set cover ?

Consider any fixed element of the universe , say u,

One

#In is not covered in any execution of the rounding step]

= TT 1CSi is not picked]
-

LP constraint implies
i:ES; Exi

*

>1fn= 2
i : UES;

=
iT (l-xi)exei : UES; 17

#[u is not covered in any of the logn + 2 steps] -(loght
③

By union bound

IP [=>2 that is not covered in any of the] -n
10Gm + 2 steps

Thus, #(Final integral soln after stepf

L is a cover with cost = Klogn + 8) · Opta
+ =

Thus
,
in expectation , step & needs to be repeated 2 times

and in the end we find a set cover whose cost is

= (10gn + 8)--LP objective value
N

= 110gh+ 8) ·TP + ILP objective value

Thus
, we obtain a OClogn) approximation.

#ote: It is NP-hard to obtain a better approximation of set cover.

Hardness of Approximation

Unfortunately not all problems can be approximated beyond certain thresholds in poly-time.
How do we prove that such problems are hard because these are not decision problems .

The basic idea is similar : reduce to a problem that is known to be NP-hard

but one needs to take into account the approximation factors to convert it to

a decision problem.

Let's see some examples.

Hardness of Traveling Salesman Problem

Traveling Salesman Problem

Given a list onn cities with distances dijj) , find the shortest four that
visits each city exactly once and returns to the initial city.

We will prove
the following

⑨

Theorem For any function fin) that can be computed in polynomial time
in no there is no polynomial-time fan) approximation algorithm
for the TSP on general weighted graphs unless P=NP.

(approximating
-

roofSketch If there is an algorithm for TSP, one can solve the

Hamiltonian Cycle problem in poly-calls to the TSP algorithm .

-

↳ This is a decision problem :

Given a Graph G = (V,E) , is there a Hamiltonian Cycle
in graph or not.

Since Hamiltonian Cycle is a known NP-hard problem , it

follows that approximating TSP is NP-hard in general -

&eduction Given an instance G = (VIE) for the Hamiltonian Cycle Problem

we define a TSP instance as follows :

6 will be a complete graph on V &

dij) = 52 if eeE

nf(n) O

(YES) If G had a Ham
. cycle - > G has a toor with cost -1

(NO) IfG didn't have a Ham
. cycle - every tour in

G' has cost

-> nf(n) + n - 1

-
--O

cost -n

--
cost a (f(n) +1 -p)nf(x)

input to
input toHam

. cycle TSP

The main property of reductions that establish hardness is the gap
between the two cases.

This proves that TSP is hard to approximate with any factor f(n) .

#

⑤

How to deal with problems that are even hard to approximate , such as TSP ?

Maybe our input have more structure that we are not using

E
. g. for TSP , our distances satisfy the triangle inequality in many cases

of interest.

d(ij) = d(i, k) + d(k , j) #vertices i.j , k

In this case
,
there is a simple 2-approximation algorithm for TSP .

--

↳ This is called the Metric TSP

Metric TSP algorithm

E compute a minimum spanning tree 5 of the weighted input graph

* Perform a depth-first traversal of T numbering the vertices in this order

& Return the tour obtained by visiting the vertices according to this numbering .

⑳

⑳

-ThereMissesarotometrics i
ras

in the order given by depth-first search. This is not a valid TSP

four since we will visit vertices more than once. But

cost of this "tour" 2 . cost of MST ,
since each edge is traversed

atmost twice

The final four is obtained by removing duplicate vertices in the "tour"
This does not increase the cost because of triangle inequality , going
straight only costs less.

On the other hand , cost of MST < cost of optimal tour (Why ?]

Tus
,
this gives us a 2-approximation #

⑥

