
LECTURE IS (October 23rd)

APPLICATION OF MINIMUM CUTS

We have been talking about various kinds of abstract problems that can be reformulated
as different kinds of maximum flow problems usually through some generalization of
the idea of finding disjoint paths/bipartite matching.

Cycle Cover Problem

Given a graph (not a DAG) cover the edges ofG with cycles .
The cycles are allowed to share vertices but not edores !

How can we turn this into a matching
problem ?

We want to find the successor of every· ede the same cycleOM

We can build a bipartite graph

6 = GLoR , Ell

Where L = [u ++/(u+v E3 = R
i. e

.
the vertices ofGare the edges

of G . The only edges in E' are thoseof- the head on the right side., i. e .
where the tail of the left side equals

&u + v) , (r +w)} is an edge in E'

L R and those are all the edges.

vertices = ZIE) To find a cycle cover
,
we need to match

edges -
> IEI . IVI all the vertices inIto R

, i
. e. we need

to find a matching that matches all vertices
in 1

.
This is called a perfect matching. The way

to do this is to compute the maximum matching
and make sure every vertex in G' is matched

The Running time of this algorithm is

O((L1 + IRI) · IEM) = OCIEloEl (V1)
= OCIER . (1)

Q

#BaseballElimination Problem

Here is another problem that is partly motivated by the real-world.

When is a baseball team mathematically eliminated ?

Various teams play over 100 games in the course of a year against
each other and the idea is that when the main part of the season
ends

, you want to come out on top because that puts you into
at least the competition for the world series ·

So
,
teams keep very

careful statistics. One of the statistics that people keep track of
is how many games has each team won and lost during the course
of the season so far. And also how many games has each team left
to play against other teams .

For example , here are the statistics for some of the teams from 1996

Here Detroit is clearly behind but the question is it even possible
for Detroit to come out on top. For example , if Detroit wins all
of their remaining 27 games , they win 76 games in total

,
so it

seems like the answer should be yes. But for this to happen , NY
cali only win at most one game , Baltimore at most 5 and so
on . If you notice more carefully then , there are not enough games
left here. For example , NY & Boston have to play o games and one

of them will win
.

So
,
it is not clear if Detroit can come out on

top and in fact one can make an ad hos argument like this to
see that Detroit can not come out on top .

But here we will try to resolve this question systematically. We are just
going to set it up as a maximum flow problem , run Ford-Fulkerson and

the answer will fall out if we have set this up correctly .

②

The input here is for each teah

Wins[i] -> How many games has team i won
in the past ?

Games [i ,j) + How many future games are left between teams
i and j ?

The output is TRUE if teamI could end the season in the 1st place
(may be tied)

OR FALSE O

Let us also define Left (i) = &Games (i .j) to be the total number

of game team i has left

We are also going to assume that teamI wins all of its remaining games .

So
,
team i wins the season if every team : wins atmost

Wins(n) + Left (n) - Wins[i] future games. In other words, we are

trying to imagine for all of the future games if there is a way to

assion a winner to each of those games so that this condition holds .

Every other team plays a certain number of games but all of the games
must be played and a winner assigned to every one of those games .

So
,

this seems like a bipartite matching problem since we are assigning
Winners to games. With that intuition , letvs build a bipartite graph
Where left vertices represents games and right vertices represent teaps .

8 ⑧

g O

oij ti
-g

8-
Otj

go 8

games teams

There are- (2) There are n-1 teams

game pairs

For each of the future game , we want to assion a winner . Said differently,
for all of the future games between ; and j , we need to split them up .

Some of these will be won by team : and the rest by team i
So

,
we connect each node gig to nodes to to in the right layer

③

We also add a source so a sint and add edges with capacity
Games[i

,j) between s & gij and with capacity Wins(n) +Left(n) -Winsfil
between to t

8 ⑧
ins(n) + Left (n) -Wins(i)

Games (i ,j)
g O

↓
> obj ti
->->Eg

8-
Otj

go 8

For the above example , the network looks like the following :

&

*

↑ This has to be the max flow

#

theorem Team in can win season There is a flow in G that saturates

every edge out of s

Proof (E) Supposef flow saturates all edges out of s
We decomposef into paths. The flow decomposition
tellsvs that f is a weighted som of paths where
the weights are integers .

We are going to split them
into paths of unit flow. Each of those paths is going
to represent one game being played between a pair of teams
and one of those teams winning the game .

The total number of paths that go through an edge of the
team (i ..e the edge ti et) is the total number of games
that team wins

,
so the capacities on the edges from tit

imply that no team overtakes team 1.
.

This means team h

can come out on top , if all of mins/losses happens as given
by the flow .

④

↑

#) For the other direction
,
we are going to build a flow by

adding one unit of flow along this path

5 - gij + + + +

every time team i beats team j :

5.. suppose there
is some scries of outcomes so that team i

can come out on top. Each time to beats tj We are going to

push one unit of flow through the above path. This builds a flow
such that every game is played which means that all edges
5 -> gij are saturated and teal i was implies that no edge
tj + + overflows ,

so all the capacities are also met . So
,
this is

a valid flow through the network .

The running time of this algorithm is 0 (n2 . +2) = 0(n") time

We can also reduce the above problem directly to bipartite matching by making
copies of all the nodes ,

e
.g. Baltimore ... Baltimores corresponding to

the scenario where Baltimore wins 1 or 2 or 3 or 4 or 5 games among
the games it has left . [Exercise

- work out the details) But the size of the

graph might increase if you do this
,
so this may not be faster .

Project Selection/Open-pit mining

Imagine that we are given as input a sequence ofn projects that are arranged
in some sort of DAG where the edges of the graph represents dependencies.
For example , if there is an edge n+ r

.
then it means that i depends ona

for instance , I needs to be completed before u can start. Each of these projects
has ahumerical value attached to it which you can think of as profit.

For example , if we select the highlighted jobs, the total profit is - $2
.

If we add the job <D ,
then the total profit is $2 .

So
,
the question is :

Which jobs should we choose to maximize the total profit ?

⑤

So
,
the output is a subset of projects that satisfies

① Downwards closed (uts
,
u+ reE = res)

② max & $(r)
VES

One way to think about this is that we are trying to partition the
projects into two categories 50 T - S being the projects we select
andT being the projects we turn down subject to some optimization
constraints.

Recall that such a partition is called a cut. We want to find the best

possible cut in this graph but we know how to do minimum cuts
.

The way minimum
cut is defined we only look at the capacity of edges

going from Stot but we ignore the edges going from T to s

S T

O We are trying to find theF cut SuT s
.

t
.

X

& & cutr) is minimized
UES VET

Now
,
there are two issues with formulating it as a minimum cut problem

There do not seem to be any capacities associated withthe edges in
our original graph

* Project selection is a maximization problem

So
,
we need to transform the values on the vertices to capacities on

edges and turn the maximization into a minimization problem .

Suppose we could do all the jobs that gave us money but none of the jobs
that cost money. This is not possible but we would like to get as close
to this as possible. In other words , let us define P = & $(0) .

vey

$) (V7>,0

Then
, we want to minimize P-[$(). This takes care of

the minimization us

maximization issue

⑥

How about the edge capacities ?

We will show this via an example what this construction looks like :

-> We add a vertext and an edge
n + + iff $(u) < 0 with capacity - $(u)

capacity of & All other edges have capacity &
this cut is

-

-> We add a vertexs and an edge

I
sr iff $(r), 0 with capacity
$) (v)

Consider any set above that is downward closed
,
then the capacity

of this cut is finite and vice-versa . This is because all the o edges
-

are only coming in and not going out . So ,

& downward closed Capacity of S
. T is finite

If we choose a cut that has an a edge going out , it can not be
the minimum cut and also it is not downward closed .

If we do not take any jobs , then the capacity of the art is P
so
,
the profit is zero .

So
, we want to find the minimum cut above which gives us the
maximum profit.

To formalize the above intrition Letvs define

cost(s)=E - $(u) =El-
$) (u)co

income (s) = 2 $(0) = Ei <(s+ r)
JES VES

$(v) > 0

Then
,
p = income (V) = [c(s+ r) = income (s) + income (T)

⑦

So
, profit(s) = income (s) - cost(s)

=> IIS ,TI = income(T) + cost(s)
= P - profit(s)

sotomaximize theprofit
,
we want to find the minionhe

⑧

