
LECTURE14 (October 16th)

APPLICATIONS OF MAY FLOW

Edge Disjoint Paths Problem

We are given a directed graph G = (VIE)
,
two vertices and t

and we want to find the largest number of paths from s to +
Where every edge in the graph appears in at most one of the paths

-X-
·

⑰

For example , the highlighted paths above are egoe-disjoint

This is a fundamental problem that occurs in many real-world scenarios
such as how few Google Streetview cars to send out to maximize street

coverage.

The following is the algorithm to solve this problem :

" Assion capacity I to every edge
& Compute max (s

,
t)- flow f

= value of the max flow is the number of edge disjoint paths

Why does this work ? Since every capacity is an integer , the maximum flow
value is an integer. This is the flow that Ford - Fulkerson computes .
Since flow is an integer flow , every edge must have either o or 1 unit
of flow through it. The edges with 1 unit of flow comprise the edge
disjoint paths. In particular : if we leave at how many paths leaves , that
will be the same as the net flow. The paths are edge disjoint because
if two paths share an edge then that would be two units of flow which

is not possible because the capacity is 1 .

This world just give the maximum number of edge disjoint paths. If we
want the paths themselves , we can add one more step

↑

Compute the flow decomposition of fo into paths

The running time of Ford-Fulkerson is OCIEI . If
*)

①

But if you think about it If
%
<NVI since the maximum number

of edge disjoint paths is at most the maximum out degree of
any vertex which is atmost NI .

So
,
the running time of Ford- Fulkerson here is OCII . IE1)

Which is the same as Orlin's algorithm .

Also
, computing the flow

decomposition takes OCIVIE1 time

[that if the graph is undirected ? Replace every undirected edge
with two directed edgoes

1

- *&

and run Ford-Fulkerson. It is possible that Ford- Fulkerson will
compute a flow using both these edges but one can do a sanity
check and remove such cycles in the flow decomposition. Alternatively,
one can split the two directed edges further and then compute
the flow .

-or-
4 - X
1

1

This is still ONI . IEI) time .

Iertex disjoint paths

What if we want the maximum number ofyaths that do not share any
vertices ?

/
-

Here what we would want is also a capacity on the vertices somehow .

In other words , a feasible flow of satisfies

0 ↓ f(e) < ((e) for every edge e
but also [f(u + r) 1 ((r) for every vertex v

u+ v

-
- By conservation , this is also the flow coming

out of u ②

As a concrete example ,
this flow saturates the vertex with capacity 3 below

#

F
Now

,
there are two possibilities to design an algorithm here

② Change the flow algorithm to handle this case

This is not recommended ! One has to carefully think about residual graph
subject to vertex capacities and other details and make sure it works .

Hint : this gets very difficult
!

② Change the graph/flow network and solve the regular flow problem
on this new graph

Here we will somehow construct a graph where each vertex capacity
is represented as capacity of an edge. For example , the above vertex

will have a new edge with capacity 3 .

⑮D1
+/

We can do this for every vertex in O(NI+ IE1) time .

Now
,
we can just use the standard flow algorithm to find a flow

in this new graph which easily gives us a flow in the original graph
as well. We can also decomposte the flow in the new graphs into
paths and cycles and obtain a flow decomposition for the flow in
the original graph as well. This also takes ODVI#1) time

.

Now
, suppose we want at most two paths sharing an edge and

at most three paths sharing a vertex. Exercise !

-ipartiteMatching

A bipartite graph is a graph where
vertices can be divided into two parts
L and R such that edges only go
between LO R

③

* matching is a set of ediges in the graph S
.
t
.
no two

edges share any vertex. For example , the red edges highlighted
above

.

The goal in this problem is to find a maximum bipartite
matching , i.e., a matching with the maximum number of edges .

How do we solve this problem
? Since

,
we want to find edges

not sharing vertices , we can consider the following graph , by
adding a sources and a sink t

,
and edges from s

to each vertex in Land from each vertex in R to +

and directing the edges from(to R
. Running time is OCIVIE) .

Capacity
Capacity Capacity 11

1 ↑
↑ ↑I
I ↓

Vertex and Edge disjoint paths in this graph are the same !

So
, if run the flow algorithm on this graph , we get the
size of the maximum matching. To get the matching, we
compute the flow decomposition and remove the edges that
touchs or t

Another way of finding the matching is to see that the max

flow is integral and the matching is the set of edges with

flow value 1
.

A useful way to think about What Ford-Folkerson is doing here
is the following.

Consider the following graph and a matching in it

④

The flow on the graph we constructed looks like

O

S ->--·
->0

00 ⑤ ⑦

/ -00& Y·o/

Where the pink edges have flow value one

and all other have flow value zero

↓ ResidualGratea

0-0

·

yo - /X
o0 #

⑤
-00·

o EX
o-g

In the original graph Now Ford- Fulkerson looks for an
this is an alternating augmenting path in this graph .

path. To update the Suppose it find the blue patt
matching , we will replace
the pink edoes with the
blue edges to increase

the size of the matching
by one. More generally , we replace M by MAP , i

. e . the symmetric
difference of M & P

.
It looks like the following sequence

↑

So
,
we don't need to explicitly compute the residual graph but

only the alternating paths. (How would you find alternating paths ?]

⑤

This notion of alternating paths was published by Berge in 1957
in what is considered as the first graph theory texbook , predating

-

Ford - Fulkerson. But infact the notion goes back way earlier to
Jacobi in 1836 who was trying to solve a problem about matrices

originating in the theory of differential equations.

The matrix problem is the following :

Perinute the rows and columns of a matrix to maximize the sum of
values along the main diagonal. This is exactly the bipartite matching
problem with weights. Joobi gave an algorithm in narrative Latin

to solve this using alternating paths ! This is also a polynomial time algorithm
which was only invented in 1960s !

->
Matrix entry corresponding torow : a column j

O

& Mij
g

rows- Columns
O O

O O

O
O

O

So
,
to solve a problem with maxflows , the standard pipeline is

Max flow
+Decomposition

Flow fa-
original normation via Ford-Fulkerson/

+ decomposition
①

Orlin's algorithm into paths
②

↓Ouformation &
Output for the

original problem

You need to describe O 0
,
since ② is a black-box

You also need to describe time analysis in terms of the original input
as well as proof of correctness , i. e., why the flow output gives the
solution to the original problem .

Typically what we are looking for is ways of relating the features in
our solutions to paths in the graphs, e .g. in the matching problem
we related it to paths .

⑥

Let's see another example of a flow problem

&isjoint Path Cover

OThe input is a DAG G = /V
, E) ·

Previously we saw problems related to

finding paths that don't collide in either vertices or edges .
Such problems are called packing problems .

In this problem , we want a covering problem- Find the smallest collection

of disjoint paths that cover all the vertices. As an example application
of this problem ,

consider the following :

Given n envelopes with height hi width wi , we can put i inside ;
if hi <hj & Wi <Wj · We want to nest envelopes into as few stacks
as possible. We can create a DAG where i -; occurs if envelope i
can be nested inside envelope j. A path is a sequence of envelopes that
can be nested and we want to find the smallest collection of such paths
to minimize the number of stacks .

This is infact a matching problem .

We are trying to assign to each

envelope what envelope we put it into , i. e ., for each vertex we are
trying to assign a successor o the number of paths is the number
of vertices that don't have a successor .

So
, minimizing the number of vertices that do not have a successor

is the same as maximizing the number of vertices that do have a
successor

,

i.e. We are trying to MATCH nodes in G to their

successor.
G = (V ,E)

How do we set it up ? We build a bipartite graphoO

S

6= CV ! LuR]

where L = copy of V
= 001

R = copy of V

and E
S

- (n + v) if n+v is edge in G
· oo

R 30 03

40 04

We want a max matching inG' which willgive so o S

us the maximum number of nodes with a successor
which gives us the minimum number of disjoint paths 6 O

O 6

or envelopes needed via # paths = #V-# matching L R

Running time is O(VE) = 0 (13) if there are i envelopes ⑦

Another example of this problem is the cycle cover problem

Given a graph (not a DAG) cover the edges ofa with cycles .
The cycles are allowed to share vertices but not edores I

How can we turn this into a matching

·
problem ?

We want to find the successor of every
OMede the same cycle

We can build a bipartite graph

6 = GLoR , Ell

Where L = [u ++/(u+v E3 = R
i. e

.
the vertices ofGare the edges

of G . The only edges in E' are thoseof- the head on the right side., i. e .
where the tail of the left side equals&

&u + v) , (r +w)} is an edge in E'

L R and those are all the edges.

vertices = ZIE) To find a cycle cover
,
we need to match

edges -
> IEI . IVI all the vertices inIto R

,
i. e. we need

to find a matching that matches all vertices
in 1

.
This is called a perfect matching. The way

to do this is to compute the maximum matching
and make sure every vertex in G' is matched

The Running time of this algorithm is

O((L1 + IRI) · IEM) = OCIEloEl (V1)
= OCIER . (1)

⑳

