
LECTURE 13 (October 14th)

FlowDecompositions

Recall the set up from the last Lecture about maximum flows & minimum cuts .

Here we are trying to find some other optimization structure in a graph .

The input is a flow network which is a directed graph C= /V
, E) , two vertices

s and t and capacities (e) > 0
.

If we think of the edges as pipes and capacities as the capacity of the pipe ,
-

the maximum flow problem is asking how quickly can we inject water into the
source vertex s and pull it out of the target vertex t

So
,
the idea is that we want to compute another function called the flow f: E +1, o

that assigns non-negative values to each edge and satisfies the following constraints

0 f(u + 07 > 0 non-negativity constraint
② flu+ r) < clu+ul capacity constraint

③ Ef(u + ul = [f(u+ u)
z

for all us , t conservation constraint

The goal is to maximize the net flow

(f) = &fls+w) -u +s)
-

flow coming- flow coming
out of s into s

= [f(u ++) - 2f(t + w)
U

- -

flow coming flow coming
into t out of t

So
,
we are not looking for a combinatorial structure like shortest path

or minimum spanning tree but a global function that describes how stuff
moves through the network

So
,
one of the homework questions in the next homework will ask you to

figure out when the maximum flow is unique since in general there may
be several maximum flows in a network

①

So
,
the other piece of this puzzle is the minimum cut problem .

Here we want to compute a partition V= Sr T where S & T are disjoint
and cover all vertices s. t . seS

,

+- T and we minimize

115
,
T1 = & & clutul

utS veT

the last lecture
,
we saw the max-flow min-cut theorem

If1 = IIs, TI

which also gave us an algorithm to find the maximum flow .

This is the Ford-Fulkerson algorithm. Let us recall how it works

Consider the following flow network and a flow in it. Ford- Folkerson
first builds the residual graph of the flow .

flow <-- capacity
value

The value of the Residual graph of
flow is 10 the flow

Next
,
the algorithm looks at a path from s to + in the residual

graph. This is called the argenting path. The algorithm then pushes
as much flow along this path as possible , which equals the minimum

capacity along this path .

Augmenting path New flow

②

The proof of the max-flow min-cut theorem boils down to the following
· if there is no augmenting path from to t , then we already
have a maximum flow

· if we take S = all vertices reachable from s and T = everything
else
,
then this gives a cut which has the same value as the current

How and certifies that we have both a maximum flow and a minimum cut
.

So
,
Ford-Fulkerson algorithm is

Augmenting Paths Algorithm

Initialize f+ O

Gf G

While there is a path p from to + in Of
push flow along p
rebuildOf

Return f

So
,
what we saw last time is that if this algorithm halts

,

it returns a maximum flow ,
but does it always halt ?

We have the following integrality theorem :

If all capacities are integers , Ford-Fulkerson always returns an integer
Maximum flow .

The proof of this is via induction. Every time the algorithm finds a new flow
its value is always an integer that's larger but there is a finite cap, so it

#

must halt after If1 iterations where If* I is the maximum flow value
·s

This
,
the running time of Ford-Fulkerson is 0 (IE) · If) .

However
,
consider the following example where X is a very large integer

The Maximum flow value here

is 2X .

③

However, Ford-Fulkerson does not specify which argenting path to choose
so
,
if an adversary always picks the path to make it run as slowly as

possible , it will always choose the highlighted red and green paths alternating
them. You can see that for this particular flow network, the number of
iterations is exactly 2X . So

, Ford- Fulkerson can take If iterations if
We do not specify how to choose the argenting paths .

However
, for the above graph , how much information are we given-

the input takes ollogX) + 0(1) bits to describe .
So
, running time

of Ford-Fulkerson , which is X , is exponential in the input size .

So
,
the obvious response is we choose our paths badly in this algorithm .

Can we choose them in a clever way ?

& Among all argenting paths , choose the path with the maximum capacity
This runs in time

O (IER V . log If
* 1)

We will discuss this in a second but note that still depends on the flow
and requires integer capacities to Work .

Finding the fattest augmenting path can be done with a small modification
to Dijkstra's algorithm in near-linear time .) Instead of looking at the
minimum path length , we look for maximum among the minimum edges)
The difficult part here is to analyze the number of iterations .

* Another way of choosing an argenting path is to take the shortest

argenting path (i . e. the minimum number of edges , not weights) .
This can be done in linear time and it does not depend on the flow
value.

This is called the Edmonds - Karp algorithm .

But the above still uses that the capacities are integers . What if we allow
irrational capacities ? Here we allow the arithmetic operations to be done by
some subroutine which is quite natural .

However , in this case Ford-Fulkerson may never halt as the following
example shows :

④

Inverse of This is still a

- Golden well-behaved
Ratio=

1+55
irrational number

and we can still
do arithmetic

operations in
OI) time

.

But consider the residual capacity of the green edge here while we do
an infinite sequence of argimentations .

The first path we augment is highlighted by red in the top figure. This
adds one unit of flow .

Once we have done this the green edge is

now pointing to the left in the residual graph. Now we augment along
path B . It flips the middle edge again. Now we can use path C

which flips it again. ThenB again followed by A .
So
,
the pattern is

Top , B , C , B , A , B, C , B,A,

The math is in the notes but it turns out every time after the firstS

augmentation if we do this the flow increases by the following values

Top , B
,
C
,
B
,
A

,
B
,
C

100p22p383

So
,
the number get smaller and smaller and even if we run this forever

the total flow value is at most

+ +2 7

However
,
it is easy to see that the maximum flow is 2X+1 x 7.

So
,
Ford-Fulkerson does not even work here

, again if we are not careful
how we are choosing the path.

If we use the fattest argenting path here , it turns out that we
can get stuck in an infinite loop but at least we converge to the right
answer

⑤

If we use the shortest argenting path , we always terminate in polynomial
time

.

It turns out that max flow can be solved in OCI . IE1) time -> You can

use this for homework & exams. In fact , there is major progress recently
in some cases !

Note that if all capacities are one
,
OCIVI . IEI) is the running time of

Ford-Fulkerson. To explain , why this is a natural time bound in general ,
let us look at Flow Decompositions.

#Decompositions
There are two different ways of describing a flow .

· The first one we saw before , a flow is a function on edges satisfying
non-negativity , capacity & conservation constraints

.

· The second way of describing flows that is very useful for applications is
to think of flows as a sun of paths o cycles .

⑤70504070t Given any path from s to t
, we

can think of this path as encoding
a flow with value one .

But it is also true that cycles are flows - if we send one unit
of flow along any cycle in the graph it is a flow.

o
So
,
if we have two flowsfof in the graph

f + f is also a flow
af is also a flow for any scalar <

> 0
.

Above we are ignoring the capacity constraints (you can think of them
as so for the time being

So
,
one way to think about this is that the set of paths & cycles

give me a way to decompose a flow into elementary pieces with
simple combinatorial structure.

⑥

The easiest way to describe this is considering only flows with
value zero. This can be accomplished by adding extra edges
in the flow network. For example , if we ignore the edge
from + to s with flow is below

,
this is describing a flow

with value 15 from s to t , but we have added that one

edge to push the flow along that edge . Now
,
the conservation

constraint holds at every vertex includings Ot. The net flow
is zero. This is what is referred to as a circulation.

Here is a way to decompose any circulation in a set of cycles.
It is a simple algorithm - look for any cycle where every edge
is carrying a positive amount of flow . Reduce the flow value

as much as possible without making anything negative . Repeat
until all edges have zero flow values·

We are doing something like Ford-Fulkerson but ignoring capacities
at the moment. (But no residual graphs here)

Thus
, any circulation can be decomposed into = IEI cycles

in OCIVI · /El] time .

general , a flow will decompose into som of paths & cycles by
ignoring the extra edge we added·

Thus
, any flow

is a weighted sum of flows& cycles. If we throwy

away all the cycles ,
it does not change the value of the sum

5., we have reduced to the case of a flow where the edges that

carry flow define a DAG
.

The value of the flow is the som of
weights of the paths. This means that there is an acyclicmax
flow .

Moreover
,
if the flow is integral , the weights are integral . ⑦

The above also gives an algorithm to decompose the flow into

weighted sun of paths & cycles in OCNIIE1) time. There
are at most OCIEI) components & finding each one takes OCIVI)
time.

There are flow where any flow decomposition has total complexity
R(VE) . Thus, any algorithm that constructs flow , one path or
cycle at a time will take RIVI . El) time. In particular, any
variant of Ford-Folkerson rons in 1/IVI . IEl) time .

For the fattest argenting path algorithm , one can show that

each the fattest path must carry *IEI fraction of the flow
so
,
one can show that the running time is OCERVlogIf

%)
with some work.

For the shortest augmenting path , as we run the algorithm various

directed edges disappear from the residual graphs because they
are saturated and then later reappear because we push flow backwards .

Each time we remove an edge and put it back again , the distance
between s and t has to increase

,
so for every edge there are

6)NVI) times where this happens . To do this for all edges , we need
O(IVI . IE1) iterations· Each iteration requires OCEI) time to find
the shortest augmenting yath , so this takes OCIVI . IEP) time .

Po we need to compute all the flow decompositions to compute
the max flow ? This was a long standing open problem and

there has been a lot of progress

· Orlin in 2012 gave an OCIVI · IEI) time algorithm

· Chen et al . in 2022 gave an algorithm OCIEl HollogU) time
where V is the maximum capacity

· Bernstein et al
.

in 2024 gave an algorithm that runs in
&(N12+011 log 2) time .

This algorithm is under the Good an

augmenting path algorithms .

⑳

