
Where, however, the ambiguity cannot be cleared up, either by the rule of faith or by
the context, there is nothing to hinder us to point the sentence according to any
method we choose of those that suggest themselves.

— Augustine of Hippo, De doctrina Christiana (397CE)
Translated by Marcus Dods (1892)

I dropped my dinner, and ran back to the laboratory. There, in my excitement,
I tasted the contents of every beaker and evaporating dish on the table.
Luckily for me, none contained any corrosive or poisonous liquid.

— Constantine Fahlberg on his discovery of saccharin,
Scientific American (1886)

The greatest challenge to any thinker is
stating the problem in a way that will allow a solution.

— attributed to Bertrand Russell

When you come to a fork in the road, take it.
— Yogi Berra (giving directions to his house)

2
Backtracking

This chapter describes another important recursive strategy called backtracking.
A backtracking algorithm tries to construct a solution to a computational problem
incrementally, one small piece at a time. Whenever the algorithm needs to
decide between multiple alternatives to the next component of the solution, it
recursively evaluates every alternative and then chooses the best one.

2.1 N Queens

The prototypical backtracking problem is the classical n Queens Problem, first
proposed by German chess enthusiast Max Bezzel in 1848 (under his pseudonym
“Schachfreund”) for the standard 8× 8 board and by François-Joseph Eustache
Lionnet in 1869 for the more general n× n board. The problem is to place n
queens on an n× n chessboard, so that no two queens are attacking each other.

1

2. BACKTRACKING

For readers not familiar with the rules of chess, this means that no two queens
are in the same row, the same column, or the same diagonal.

♕

♕
♕

♕

♛♕

♛♕

♛♕
♛♕

Figure 2.1. Gauss’s first solution to the 8 queens problem, represented by the array [5,7, 1,4, 2,8, 6,3]

In a letter written to his friend Heinrich Schumacher in 1850, the eminent
mathematician Carl Friedrich Gauss wrote that one could easily confirm Franz
Nauck’s claim that the Eight Queens problem has 92 solutions by trial and
error in a few hours. (“Schwer ist es übrigens nicht, durch ein methodisches
Tatonniren sich diese Gewissheit zu verschaffen, wenn man 1 oder ein paar Stunden
daran wenden will.”) His description Tatonniren comes from the French tâtonner,
meaning to feel, grope, or fumble around blindly, as if in the dark.

Gauss’s letter described the following recursive strategy for solving the
n-queens problem; the same strategy was described in 1882 by the French
recreational mathematician Édouard Lucas, who attributed the method to
Emmanuel Laquière. We place queens on the board one row at a time, starting
with the top row. To place the rth queen, we methodically try all n squares in
row r from left to right in a simple for loop. If a particular square is attacked by
an earlier queen, we ignore that square; otherwise, we tentatively place a queen
on that square and recursively grope for consistent placements of the queens in
later rows.

Figure 2.2 shows the resulting algorithm, which recursively enumerates all
complete n-queens solutions that are consistent with a given partial solution.
Following Gauss, we represent the positions of the queens using an array
Q[1 .. n], where Q[i] indicates which square in row i contains a queen. When
PlaceQueens is called, the input parameter r is the index of the first empty row,
and the prefix Q[1 .. r − 1] contains the positions of the first r − 1 queens. In
particular, to compute all n-queens solutions with no restrictions, we would call
PlaceQueens(Q[1 .. n], 1). The outer for-loop considers all possible placements
of a queen on row r; the inner for-loop checks whether a candidate placement
of row r is consistent with the queens that are already on the first r − 1 rows.

The execution of PlaceQueens can be illustrated using a recursion tree.
Each node in this tree corresponds to a recursive subproblem, and thus to a
legal partial solution; in particular, the root corresponds to the empty board

2

2.1. N Queens

PlaceQueens(Q[1 .. n], r):
if r = n+ 1

print Q[1 .. n]
else

for j← 1 to n
legal← True
for i← 1 to r − 1

if (Q[i] = j) or (Q[i] = j + r − i) or (Q[i] = j − r + i)
legal← False

if legal
Q[r]← j
PlaceQueens(Q[1 .. n], r + 1) 〈〈Recursion!〉〉

Figure 2.2. Gauss and Laquière’s backtracking algorithm for the n queens problem.

(with r = 0). Edges in the recursion tree correspond to recursive calls. Leaves
correspond to partial solutions that cannot be further extended, either because
there is already a queen on every row, or because every position in the next
empty row is attacked by an existing queen. The backtracking search for
complete solutions is equivalent to a depth-first search of this tree.

♕ ♛♕ ♕ ♛♕

♕
♛♕

♕
♕

♛♕
♕

♕
♛♕

♛♕
♛♕

♛♕
♕

♛♕
♕

♕

♕
♛♕

♛♕

♕
♕

♛♕

♛♕
♛♕

♕

♛♕
♕

♕
♛♕

♕
♛♕

♛♕
♕

Figure 2.3. The complete recursion tree of Gauss and Laquière’s algorithm for the 4 queens problem.

3

2. BACKTRACKING

2.2 Game Trees

Consider the following simple two-player game1 played on an n× n square grid
with a border of squares; let’s call the players Horace Fahlberg-Remsen and
Vera Rebaudi.2 Each player has n tokens that they move across the board from
one side to the other. Horace’s tokens start in the left border, one in each row,
and move horizontally to the right; symmetrically, Vera’s tokens start in the
top border, one in each column, and move vertically downward. The players
alternate turns. In each of his turns, Horace either moves one of his tokens one
step to the right into an empty square, or jumps one of his tokens over exactly
one of Vera’s tokens into an empty square two steps to the right. If no legal
moves or jumps are available, Horace simply passes. Similarly, Vera either moves
or jumps one of her tokens downward in each of her turns, unless no moves or
jumps are possible. The first player to move all their tokens off the edge of the
board wins. (It’s not hard to prove that as long as there are tokens on the board,
at least one player can legally move, and therefore someone eventually wins.)

Figure 2.4. Vera wins the 3× 3 fake-sugar-packet game.

1I don’t know what this game is called, or even if I’m reporting the rules correctly; I learned
it (or something like it) from Lenny Pitt, who recommended playing it with fake-sugar packets at
restaurants.

2Constantin Fahlberg and Ira Remsen synthesized saccharin for the first time in 1878, while
Fahlberg was a postdoc in Remsen’s lab investigating coal tar derivatives. In 1900, Ovidio Rebaudi
published the first chemical analysis of ka’a he’ê, a medicinal plant cultivated by the Guaraní for
more than 1500 years, now more commonly known as Stevia rebaudiana.

4

2.2. Game Trees

Unless you’ve seen this game before3, you probably don’t have any idea how
to play it well. Nevertheless, there is a relatively simple backtracking algorithm
that can play this game—or any two-player game without randomness or hidden
information that ends after a finite number of moves—perfectly. That is, if we
drop you into the middle of a game, and it is possible to win against another
perfect player, the algorithm will tell you how to win.

A state of the game consists of the locations of all the pieces and the identity
of the current player. These states can be connected into a game tree, which has
an edge from state x to state y if and only if the current player in state x can
legally move to state y. The root of the game tree is the initial position of the
game, and every path from the root to a leaf is a complete game.

Figure 2.5. The first two levels of the fake-sugar-packet game tree.

To navigate through this game tree, we recursively define a game state to
be good or bad as follows:
• A game state is good if either the current player has already won, or if the

current player can move to a bad state for the opposing player.
• A game state is bad if either the current player has already lost, or if every

available move leads to a good state for the opposing player.
Equivalently, a non-leaf node in the game tree is good if it has at least one bad
child, and a non-leaf node is bad if all its children are good. By induction, any
player that finds the game in a good state on their turn can win the game, even
if their opponent plays perfectly; on the other hand, starting from a bad state, a
player can win only if their opponent makes a mistake. This recursive definition
was proposed by Ernst Zermelo in 1913.4

3If you have, please tell me where!
4In fact, Zermelo considered the more subtle class of games that have a finite number of

states, but that allow infinite sequences of moves. (Zermelo defined infinite play to be a draw.)

5

2. BACKTRACKING

This recursive definition immediately suggests the following recursive back-
tracking algorithm to determine whether a given game state is good or bad. At
its core, this algorithm is just a depth-first search of the game tree; equivalently,
the game tree is the recursion tree of the algorithm! A simple modification of
this backtracking algorithm finds a good move (or even all possible good moves)
if the input is a good game state.

PlayAnyGame(X ,player):
if player has already won in state X

return Good
if player has already lost in state X

return Bad
for all legal moves X ⇝ Y

if PlayAnyGame(Y,¬player) = Bad
return Good 〈〈X ⇝ Y is a good move〉〉

return Bad 〈〈There are no good moves〉〉

All game-playing programs are ultimately based on this simple backtracking
strategy. However, since most games have an enormous number of states, it is
not possible to traverse the entire game tree in practice. Instead, game programs
employ other heuristics5 to prune the game tree, by ignoring states that are
obviously (or “obviously”) good or bad, or at least better or worse than other
states, and/or by cutting off the tree at a certain depth (or ply) and using a
more efficient heuristic to evaluate the leaves.

2.3 Subset Sum

Let’s consider a more complicated problem, called SubsetSum: Given a set X
of positive integers and target integer T , is there a subset of elements in X that
add up to T? Notice that there can be more than one such subset. For example,
if X = {8, 6,7, 5,3, 10,9} and T = 15, the answer is True, because the subsets
{8,7} and {7, 5,3} and {6,9} and {5, 10} all sum to 15. On the other hand, if
X = {11,6, 5,1, 7,13, 12} and T = 15, the answer is False.

There are two trivial cases. If the target value T is zero, then we can
immediately return True, because the empty set is a subset of every set X , and
the elements of the empty set add up to zero.6 On the other hand, if T < 0, or
if T ̸= 0 but the set X is empty, then we can immediately return False.

For the general case, consider an arbitrary element x ∈ X . (We’ve already
handled the case where X is empty.) There is a subset of X that sums to T if
and only if one of the following statements is true:

5A heuristic is an algorithm that doesn’t work. (Except in practice. Sometimes. Maybe.)
6. . . because what else could they add up to?

6

2.3. Subset Sum

• There is a subset of X that includes x and whose sum is T .
• There is a subset of X that excludes x and whose sum is T .
In the first case, there must be a subset of X \ {x} that sums to T − x; in the
second case, there must be a subset of X \ {x} that sums to T . So we can solve
SubsetSum(X , T) by reducing it to two simpler instances: SubsetSum(X \{x},
T − x) and SubsetSum(X \ {x}, T). The resulting recursive algorithm is shown
below.

〈〈Does any subset of X sum to T?〉〉
SubsetSum(X , T):

if T = 0
return True

else if T < 0 or X =∅
return False

else
x ← any element of X
with ← SubsetSum(X \ {x}, T − x) 〈〈Recurse!〉〉
wout← SubsetSum(X \ {x}, T) 〈〈Recurse!〉〉
return (with∨wout)

Correctness

Proving this algorithm correct is a straightforward exercise in induction. If
T = 0, then the elements of the empty subset sum to T , so True is the correct
output. Otherwise, if T is negative or the set X is empty, then no subset of X
sums to T , so False is the correct output. Otherwise, if there is a subset that
sums to T , then either it contains X [n] or it doesn’t, and the Recursion Fairy
correctly checks for each of those possibilities. Done.

Analysis

In order to analyze the algorithm, we have to describe a few implementation
details more precisely. To begin, let’s assume that the input set X is given as an
array X [1 .. n].

The previous recursive algorithm allows us to choose any element x ∈ X in
the main recursive case. Purely for the sake of efficiency, it is helpful to choose
an element x such that the remaining subset X \ {x} has a concise description,
which can be computed quickly, so that setting up the recursive calls requires
minimal overhead. Specifically, we will let x be the last element X [n]; then
the subset X \ {x} is stored in the prefix X [1 .. n− 1]. Passing a complete copy
of this prefix to the recursive calls would take too long—we need Θ(n) time
just to make the copy—so instead, we push only two values: a reference to the
array (or its starting address) and the length of the prefix. (Alternatively, we

7

2. BACKTRACKING

could avoid passing a reference to X to every recursive call by making X a global
variable.)

〈〈Does any subset of X [1 .. i] sum to T?〉〉
SubsetSum(X , i, T):

if T = 0
return True

else if T < 0 or i = 0
return False

else
with ← SubsetSum(X , i − 1, T − X [i]) 〈〈Recurse!〉〉
wout← SubsetSum(X , i − 1, T) 〈〈Recurse!〉〉
return (with∨wout)

With these implementation choices, the running time T (n) of our algorithm
satisfies the recurrence T (n) ≤ 2T (n− 1) +O(1). The solution T (n) = O(2n)
follows easily using either recursion trees or the even simpler “Oh yeah, we
already solved this recurrence for the Tower of Hanoi” method. In the worst
case—for example, when T is larger than the sum of all elements of X—the
recursion tree for this algorithm is a complete binary tree with depth n, and the
algorithm considers all 2n subsets of X .

Variants

With only minor changes, we can solve several variants of SubsetSum. For
example, Figure 2.6 shows an algorithm that actually constructs a subset of X
that sums to T , if one exists, or returns the error value None if no such subset
exists; this algorithm uses exactly the same recursive strategy as our earlier
decision algorithms. This algorithm also runs in O(2n) time; the analysis is
simplest if we assume a set data structure that allows us to insert a single
element in O(1) time (for example, a linked list), but in fact the running time
is still O(2n) even if insertion requires O(n) time (for example, a sorted linked
list). Similar variants allow us to count subsets that sum to a particular value,
or choose the best subset (according to some other criterion) that sums to a
particular value.

Most other problems that are solved by backtracking have this property: the
same recursive strategy can be used to solve many different variants of the same
problem. For example, it is easy to modify the recursive strategy described in
the previous section, which determines whether a given game position is good
or bad, to instead return a good move, or a list of all good moves. For this
reason, when we design backtracking algorithms, we should aim for the simplest
possible variant of the problem, computing a number or even a single boolean
instead of more complex information or structure.

8

2.4. The General Pattern

〈〈Return a subset of X [1 .. i] that sums to T 〉〉
〈〈or NONE if no such subset exists〉〉
ConstructSubset(X , i, T):
if T = 0

return ∅
if T < 0 or n= 0

return None
Y ← ConstructSubset(X , i − 1, T)
if Y ̸= None

return Y
Y ← ConstructSubset(X , i − 1, T − X [i])
if Y ̸= None

return Y ∪ {X [i]}
return None

Figure 2.6. A recursive backtracking algorithm for the construction version of SUBSETSUM.

2.4 The General Pattern

Backtracking algorithms are commonly used to make a sequence of decisions, with
the goal of building a recursively defined structure satisfying certain constraints.
Often (but not always) this goal structure is itself a sequence. For example:
• In the n-queens problem, the goal is a sequence of queen positions, one in

each row, such that no two queens attack each other. For each row, the
algorithm decides where to place the queen.

• In the game tree problem, the goal is a sequence of legal moves, such that
each move is as good as possible for the player making it. For each game
state, the algorithm decides the best possible next move.

• In the SubsetSum problem, the goal is a sequence of input elements that
have a particular sum. For each input element, the algorithm decideswhether
to include it in the output sequence or not.

(Hang on, why is the goal of subset sum finding a sequence? That was a
deliberate design decision. We imposed a convenient ordering on the input
set—by representing it using an array, as opposed to some other more amorphous
data structure—that we can exploit in our recursive algorithm.)

In each recursive call to the backtracking algorithm, we need to make exactly
one decision, and our choice must be consistent with all previous decisions.
Thus, each recursive call requires not only the portion of the input data we have
not yet processed, but also a suitable summary of the decisions we have already
made. For the sake of efficiency, the summary of past decisions should be as
small as possible. For example:

9

2. BACKTRACKING

• For the n-queens problem, we must pass in not only the number of empty
rows, but the positions of all previously placed queens. Here, unfortunately,
we must remember our past decisions in complete detail.

• For the game tree problem, we only need to pass in the current state of the
game, including the identity of the next player. We don’t need to remember
anything about our past decisions, because who wins from a given game
state does not depend on the moves that created that state.7

• For the SubsetSum problem, we need to pass in both the remaining available
integers and the remaining target value, which is the original target value
minus the sum of the previously chosen elements. Precisely which elements
were previously chosen is unimportant.

When we design new recursive backtracking algorithms, we must figure out in
advance what information we will need about past decisions in the middle of
the algorithm. If this information is nontrivial, our recursive algorithm might
need to solve a more general problem than the one we were originally asked to
solve. (We’ve seen this kind of generalization before: To find the median of an
unsorted array in linear time, we derived an algorithm to select the kth smallest
element for arbitrary k.)

Finally, once we’ve figured out what recursive problem we really need to
solve, we solve that problem by recursive brute force: Try all possibilities for
the next decision that are consistent with past decisions, and let the Recursion
Fairy worry about the rest. No being clever here. No skipping “obviously” stupid
choices. Try everything. You can make the algorithm faster later.

2.5 Text Segmentation (Interpunctio Verborum)

Suppose you are given a string of letters representing text in some foreign
language, but without any spaces or punctuation, and you want to break this
string into its individual constituent words. For example, you might be given
the following passage from Cicero’s famous oration in defense of Lucius Licinius
Murena in 62bce, in the standard scriptio continua of classical Latin:8

7Many games appear to violate this independence condition. For example, the standard rules
of both chess and checkers allow a player to declare a draw if the same arrangement of pieces
occurs three times, and the Chinese rules for go simply forbid repeating any earlier arrangement
of stones. Thus, for these games, a game state formally includes not only the current positions of
the pieces but the entire history of previous moves.

8In·fact·most·classical·Latin·manuscripts·separated·words·with·small·dots·called·interpuncts.
Interpunctuation all but disappeared by the 3rd century in favor of scriptio continua. Empty
spaces between words were introduced by Irish monks in the 8th century and slowly spread
across Europe over the next several centuries. Scriptio continua survives in early 21st-century
English in the form of URLs and hashtags. #octotherps4lyfe

10

2.5. Text Segmentation (Interpunctio Verborum)

PRIMVSDIGNITASINTAMTENVISCIENTIANONPOTEST
ESSERESENIMSVNTPARVAEPROPEINSINGVLISLITTERIS
ATQVEINTERPVNCTIONIBUSVERBORVMOCCVPATAE

A fluent Latin reader would parse this string (in modern orthography) as Primus
dignitas in tam tenui scientia non potest esse; res enim sunt parvae, prope in singulis
litteris atque interpunctionibus verborum occupatae.9 Text segmentation is not
only a problem in classical Latin and Greek, but in several modern languages
and scripts including Balinese, Burmese, Chinese, Japanese, Javanese, Khmer,
Lao, Thai, Tibetan, and Vietnamese. Similar problems arise in segmenting
unpunctuated English text into sentences,10 segmenting text into lines for
typesetting, speech and handwriting recognition, curve simplification, and
several types of time-series analysis. For purposes of illustration, I’ll stick to
segmenting sequences of letters in the modern English alphabet into modern
English words.

Of course, some strings can be segmented in several different ways; for
example, BOTHEARTHANDSATURNSPIN can be decomposed into English words
as either BOTH·EARTH·AND·SATURN·SPIN or BOT·HEART·HANDS·AT·URNS·PIN,
among many other possibilities. For now, let’s consider an extremely simple
segmentation problem: Given a string of characters, can it be segmented into
English words at all?

To make the problem concrete (and language-agnostic), let’s assume we
have access to a subroutine IsWord(w) that takes a string w as input, and
returns True if w is a “word”, or False if w is not a “word”. For example, if
we are trying to decompose the input string into palindromes, then a “word”
is a synonym for “palindrome”, and therefore IsWord(ROTATOR) = True but
IsWord(PALINDROME) = False.

Just like the SubsetSum problem, the input structure is a sequence, this
time containing letters instead of numbers, so it is natural to consider a decision
process that consumes the input characters in order from left to right. Similarly,
the output structure is a sequence of words, so it is natural to consider a process
that produces the output words in order from left to right. Thus, jumping into
the middle of the segmentation process, we might imagine the following picture:

BLUE STEM UNIT ROBOT HEARTHANDSATURNSPIN

9Loosely translated: “First of all, dignity in such paltry knowledge is impossible; this is trivial
stuff, mostly concerned with individual letters and the placement of points between words.”
Cicero was openly mocking the legal expertise of his friend(!) and noted jurist Servius Sulpicius
Rufus, who had accused Murena of bribery, after Murena defeated Rufus in election for consul.
Murena was acquitted, thanks in part to Cicero’s acerbic defense, although he was almost certainly
guilty. #librapondo #nunquamestfidelis

10St. Augustine’s De doctrina Christiana devotes an entire chapter to removing ambiguity from
Latin scripture by adding punctuation.

11

2. BACKTRACKING

Here the black bar separates our past decisions—splitting the first 17 letters into
four words—from the portion of the input string that we have not yet processed.

The next stage in our imagined process is to decide where the next word in
the output sequence ends. For this specific example, there are four possibilities
for the next output word—HE, HEAR, HEART, and HEARTH. We have no idea which
of these choices, if any, is consistent with a complete segmentation of the input
string. We could be “smart” at this point and try to figure out which choices
are good, but that would require thinking! Instead, let’s “stupidly” try every
possibility by brute force, and let the Recursion Fairy do all the real work.
• First tentatively accept HE as the next word, and let the Recursion Fairy make

the rest of the decisions.
BLUE STEM UNIT ROBOT HE ARTHANDSATURNSPIN

• Then tentatively accept HEAR as the next word, and let the Recursion Fairy
make the rest of the decisions.

BLUE STEM UNIT ROBOT HEAR THANDSATURNSPIN

• Then tentatively accept HEART as the next word, and let the Recursion Fairy
make the rest of the decisions.

BLUE STEM UNIT ROBOT HEART HANDSATURNSPIN

• Finally, tentatively accept HEARTH as the next word, and let the Recursion
Fairy make the rest of the decisions.

BLUE STEM UNIT ROBOT HEARTH ANDSATURNSPIN

As long as the Recursion Fairy reports success at least once, we report success.
On the other hand, if the Recursion Fairy never reports success—in particular, if
the set of possible next words is empty—then we report failure.

None of our past decisions affect which choices are available now; all that
matters is the suffix of characters that we have not yet processed. In particular,
several different sequences of past decisions could lead us to the same suffix,
but they all leave us with exactly the same set of choices for that suffix.

BLUE STEM UNIT ROBOT HEARTHANDSATURNSPIN

BLUEST EMU NITRO BOT HEARTHANDSATURNSPIN

Thus, we can simplify our picture of the recursive process by discarding everything
left of the black bar:

HEARTHANDSATURNSPIN

12

2.5. Text Segmentation (Interpunctio Verborum)

We are now left with a simple and natural backtracking strategy: Select the first
output word, and recursively segment the rest of the input string.

To get a complete recursive algorithm, we need a base case. Our recursive
strategy breaks down when we reach the end of the input string, because there
is no next word. Fortunately, the empty string has a unique segmentation into
zero words!

Putting all the pieces together, we arrive at the following simple recursive
algorithm:

Splittable(A[1 .. n]):
if n= 0

return True
for i← 1 to n

if IsWord(A[1 .. i])
if Splittable(A[i + 1 .. n])

return True
return False

Index Formulation

In practice, passing arrays as input parameters is rather slow; we should really
find a more compact way to describe our recursive subproblems. For purposes of
designing the algorithm, it’s incredibly useful to treat the original input array as
a global variable, and then reformulate the problem and the algorithm in terms
of array indices instead of explicit subarrays.

For our string segmentation problem, the argument of any recursive call
is always a suffix A[i .. n] of the original input array. So if we treat the input
array A[1 .. n] as a global variable, we can reformulate our recursive problem as
follows:

Given an index i, find a segmentation of the suffix A[i .. n].

To describe our algorithm, we need two boolean functions:
• For any indices i and j, let IsWord(i, j) = True if and only if the substring

A[i .. j] is a word. (We’re assuming this function is given to us.)
• For any index i, let Splittable(i) = True if and only if the suffix A[i .. n] can

be split into words. (This is the function we need to implement.)
For example, IsWord(1, n) = True if and only if the entire input string is a
single word, and Splittable(1) = True if and only if the entire input string can
be segmented. Our earlier recursive strategy gives us the following recurrence:

Splittable(i) =











True if i > n
n
∨

j=i

�

IsWord(i, j) ∧ Splittable(j + 1)
�

otherwise

13

2. BACKTRACKING

This is exactly the same algorithm as we saw earlier; the only thing we’ve
changed is the notation. The similarity is even more apparent if we rewrite the
recurrence in pseudocode:

〈〈Is the suffix A[i .. n] Splittable?〉〉
Splittable(i):
if i > n

return True
for j← i to n

if IsWord(i, j)
if Splittable(j + 1)

return True
return False

Although it may look like a trivial notational difference, using index notation
instead of array notation is an important habit, not only to speed up backtracking
algorithms in practice, but for developing dynamic programming algorithms,
which we discuss in the next chapter.

♥Analysis

It should come as no surprise that most backtracking algorithms have exponential
worst-case running times. Analyzing the precise running times of many of
these algorithms requires techniques that are beyond the scope of this book.
Fortunately, most of the backtracking algorithms we will encounter in this book
are only intermediate results on the way to more efficient algorithms, which
means their exact worst-case running time is not actually important. (First
make it work; then make it fast.)

But just for fun, let’s analyze the running time of our recursive algorithm
Splittable. Because we don’t know what IsWord is doing, we can’t know
how long each call to IsWord takes, so we’re forced to analyze the running
time in terms of the number of calls to IsWord.11 Splittable calls IsWord
on every prefix of the input string, and possibly calls itself recursively on every
suffix of the output string. Thus, the “running time” of Splittable obeys the
scary-looking recurrence

T (n)≤
n−1
∑

i=0

T (i) +O(n)

This really isn’t as bad as it looks, especially once you’ve seen the trick.
First, we replace the O(n) term with an explicit expression αn, for some

unknown (and ultimately unimportant) constant α. Second, we conservatively
11In fact, as long as IsWord runs in polynomial time, Splittable runs in O(2n) time.

14

2.5. Text Segmentation (Interpunctio Verborum)

assume that the algorithm actually makes every possible recursive call.12 Then
we can transform the “full history” recurrence into a “limited history” recurrence
by subtracting the recurrence for T (n− 1), as follows:

T (n) =
n−1
∑

i=0

T (i) +αn

T (n− 1) =
n−2
∑

i=0

T (i) +α(n− 1)

=⇒ T (n)− T (n− 1) = T (n− 1) +α

This final recurrence simplifies to T (n) = 2T (n− 1) +α. At this point, we can
confidently guess (or derive via recursion trees, or remember from our Tower
of Hanoi analysis) that T (n) = O(2n); indeed, this upper bound is not hard to
prove by induction from the original full-history recurrence.

Moreover, this analysis is tight. There are exactly 2n−1 possible ways to
segment a string of length n—each input character either ends a word or doesn’t,
except the last input character, which always ends the last word. In the worst
case, our Splittable algorithm explores each of these 2n−1 possibilities.

Variants

Now that we have the basic recursion pattern in hand, we can use it to solve
many different variants of the segmentation problem, just as we did for the
SubsetSum problem. Here I’ll describe just one example; more variations are
considered in the exercises. As usual, the original input to our problem is an
array A[1 .. n].

If a string can be segmented in more than one sequence of words, we may
want to find the best segmentation according to some criterion; conversely, if
the input string cannot be segmented into words, we may want to compute the
best segmentation we can find, rather than merely reporting failure. To meet
both of these goals, suppose we have access to a second function Score that
takes a string as input and returns a numerical value. For example, we might
assign higher scores to longer or more common words, lower scores to shorter
or more obscure words, slightly negative scores for minor spelling errors, and
more negative scores to obvious non-words. Our goal is to find a segmentation
that maximizes the sum of the scores of the segments.

12This assumption is wildly conservative for English word segmentation, since most strings of
letters are not English words, but not for the similar problem of segmenting sequences of English
words into grammatically correct English sentences. Consider, for example, a sequence of n copies
of the word “buffalo”, or n copies of the work “police”, or n copies of the word “can”, for any
positive integer n. (At the Moulin Rouge, dances that are preservable in metal cylinders by other
dances have the opportunity to fire dances that happen in prison restroom trash receptacles.)

15

2. BACKTRACKING

For any index i, let MaxScore(i) denote the maximum score of any segmen-
tation of the suffix A[i .. n]; we need to compute MaxScore(1). This function
satisfies the following recurrence:

MaxScore(i) =

(

0 if i > n

max
i≤ j≤n

�

Score(A[i .. j]) + MaxScore(j + 1)
�

otherwise

This is essentially the same recurrence as the one we developed for Splittable;
the only difference is that the boolean operations ∨ and ∧ have been replaced
by the numerical operations max and +.

2.6 Longest Increasing Subsequence

For any sequence S, a subsequence of S is another sequence obtained from S by
deleting zero or more elements, without changing the order of the remaining
elements; the elements of the subsequence need not be contiguous in S. For
example, when you drive down a major street in any city, you drive through
a sequence of intersections with traffic lights, but you only have to stop at a
subsequence of those intersections, where the traffic lights are red. If you’re very
lucky, you never stop at all: the empty sequence is a subsequence of S. On the
other hand, if you’re very unlucky, you may have to stop at every intersection: S
is a subsequence of itself.

As another example, the strings BENT, ACKACK, SQUARING, and SUBSEQUENT
are all subsequences of the string SUBSEQUENCEBACKTRACKING, as are the empty
string and the entire string SUBSEQUENCEBACKTRACKING, but the strings QUEUE
and EQUUS and TALLYHO are not. A subsequence whose elements are contiguous
in the original sequence is called a substring; for example, MASHER and LAUGHTER
are both subsequences of MANSLAUGHTER, but only LAUGHTER is a substring.

Now suppose we are given a sequence of integers, and we need to find the
longest subsequence whose elements are in increasing order. More concretely,
the input is an integer array A[1 .. n], and we need to compute the longest
possible sequence of indices 1≤ i1 < i2 < · · ·< iℓ ≤ n such that A[ik]< A[ik+1]
for all k.

One natural approach to building this longest increasing subsequence is to
decide, for each index j in order from 1 to n, whether or not to include A[j] in
the subsequence. Jumping into the middle of this decision sequence, we might
imagine the following picture:

3 1 4 1 5 9 2 6 5 3 5? 8 9 7 9 3 2 3 8 4 6 2 6

As in our earlier text segmentation examples, the black bar separates our past
decisions from the portion of the input we have not yet processed. Numbers we

16

2.6. Longest Increasing Subsequence

have already decided to include are highlighted and bold; numbers we have
already decided to exclude are grayed out. (Notice that the numbers we’ve
decided to include are increasing!) Our algorithm must decide whether or not
to include the number immediately after the black bar.

In this example, we definitely cannot include 5, because then the selected
numbers would no longer be in increasing order. So let’s skip ahead to the next
decision:

3 1 4 1 5 9 2 6 5 3 5 8? 9 7 9 3 2 3 8 4 6 2 6

Now we can include 8, but it’s not obvious whether we should. Rather than
trying to be “smart”, our backtracking algorithm will use simple brute force.
• First tentatively include the 8, and let the Recursion Fairy make the rest of

the decisions.
• Then tentatively exclude the 8, and let the Recursion Fairy make the rest of

the decisions.
Whichever choice leads to a longer increasing subsequence is the right one.
(This is precisely the same recursion pattern we used to solve SubsetSum.)

Now for the key question: What do we need to remember about our past
decisions? We can only include A[j] if the resulting subsequence is in increasing
order. If we assume (inductively!) that the numbers previously selected from
A[1 .. j − 1] are in increasing order, then we can include A[j] if and only if
A[j] is larger than the last number selected from A[1 .. j − 1]. Thus, the only
information we need about the past is the last number selected so far. We can
now revise our pictures by erasing everything we don’t need:

6 5? 8 9 7 9 3 2 3 8 4 6 2 6

6 8? 9 7 9 3 2 3 8 4 6 2 6

So the problem our recursive strategy is actually solving is the following:

Given an integer prev and an array A[1 .. n], find the longest increasing
subsequence of A in which every element is larger than prev.

As usual, our recursive strategy requires a base case. Our current strategy
breaks down when we get to the end of the array, because there is no “next
number” to consider. But an empty array has exactly one subsequence, namely,
the empty sequence. Vacuously, every element in the empty sequence is larger
than whatever value you want, and every pair of elements in the empty sequence
appears in increasing order. Thus, the longest increasing subsequence of the
empty array has length 0.

Here’s the resulting recursive algorithm:

17

2. BACKTRACKING

LISbigger(prev, A[1 .. n]):
if n= 0

return 0
else if A[1]≤ prev

return LISbigger(prev, A[2 .. n)
else

skip← LISbigger(prev, A[2 .. n])
take← LISbigger(A[1], A[2 .. n]) + 1
return max{skip, take}

Okay, but remember that passing arrays around on the call stack is expensive;
let’s try to rephrase everything in terms of array indices, assuming that the array
A[1 .. n] is a global variable. The integer prev is typically an array element A[i],
and the remaining array is always a suffix A[j .. n] of the original input array.
So we can reformulate our recursive problem as follows:

Given two indices i and j, where i < j, find the longest increasing
subsequence of A[j .. n] in which every element is larger than A[i].

Let LISbigger(i, j) denote the length of the longest increasing subsequence of
A[j .. n] in which every element is larger than A[i]. Our recursive strategy gives
us the following recurrence:

LISbigger(i, j) =



















0 if j > n

LISbigger(i, j + 1) if A[i]≥ A[j]

max

�

LISbigger(i, j + 1)

1+ LISbigger(j, j + 1)

�

otherwise

Alternatively, if you prefer pseudocode:

LISbigger(i, j):
if j > n

return 0
else if A[i]≥ A[j]

return LISbigger(i, j + 1)
else

skip← LISbigger(i, j + 1)
take← LISbigger(j, j + 1) + 1
return max{skip, take}

Finally, we need to connect our recursive strategy to the original problem:
Finding the longest increasing subsequence of an array with no other constraints.
The simplest approach is to add an artificial sentinel value −∞ to the beginning
of the array.

18

2.7. Longest Increasing Subsequence, Take 2

LIS(A[1 .. n]):
A[0]←−∞
return LISbigger(0,1)

The running time of LISbigger satisfies the Hanoi recurrence T (n) ≤
2T (n−1)+O(1), which as usual implies that T (n) = O(2n). We really shouldn’t
be surprised by this running time; in the worst case, the algorithm examines
each of the 2n subsequences of the input array.

2.7 Longest Increasing Subsequence, Take 2

This is not the only backtracking strategy we can use to find longest increasing
subsequences. Instead of considering the input sequence one element at a time,
we could try to construct the output sequence one element at a time. That is,
instead of asking “Is A[i] the next element of the output sequence?”, we could
ask directly, “Where is the next element of the output sequence, if any?”

Jumping into themiddle of this strategy, wemight be faced with the following
picture. Suppose we just decided to include the 6 just left of the black bar in
our output sequence, and we need to decide which element to the right of the
bar to include next.

3 1 4 1 5 9 2 6 5? 3? 5? 8? 9? 7? 9? 3? 2? 3? 8? 4? 6? 2? 6?

Of course, we can only include numbers on the right that are greater than 6;
otherwise, our output sequence would not be increasing.

3 1 4 1 5 9 2 6 5 3 5 8? 9? 7? 9? 3 2 3 8? 4 6 2 6

But we have no idea which of those larger numbers is the best choice, and trying
to cleverly figure out the best choice is too much work, and it’s only going to get
us into trouble anyway. Instead, we enumerate all possibilities by brute force,
and let the Recursion Fairy evaluate each one.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

19

2. BACKTRACKING

The subset of numbers we can consider as the next element depends only
on the last number we decided to include. Thus, we can simplify our picture of
the decision process by discarding everything to the left of the bar except the
last number we decided to include.

6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6

The remaining sequence of numbers is just a suffix of the original input array.
Thus, if we think of the input array A[1 .. n] as a global variable, we can formally
express our recursive problem in terms of indices as follows:

Given an index i, find the longest increasing subsequence of A[i .. n] that
begins with A[i].

Let LISfirst(i) denote the length of the longest increasing subsequence of A[i .. n]
that begins with A[i]. We can now formulate our recursive backtracking strategy
as the following recursive definition:

LISfirst(i) = 1+max
�

LISfirst(j)
�

� j > i and A[j]> A[i]
	

Because we are dealing with sets of natural numbers, we define max∅= 0. Then
we automatically have LISfirst(i) = 1 if A[j] ≤ A[i] for all j > i; in particular,
LISfirst(n) = 1. These are the base cases for our recurrence.

We can also express this recursive definition in pseudocode as follows:

LISfirst(i):
best← 0
for j← i + 1 to n

if A[j]> A[i]
best←max{best,LISfirst(j)}

return 1+ best

Finally, we need to reconnect this recursive algorithm to our original
problem—finding the longest increasing subsequence without knowing its
first element. One natural approach that works is to try all possible first ele-
ments by brute force. Equivalently, we can add a sentinel element −∞ to the
beginning of the array, find the longest increasing subsequence that starts with
the sentinel, and finally ignore the sentinel.

LIS(A[1 .. n]):
best← 0
for i← 1 to n

best←max{best,LISfirst(i)}
return best

LIS(A[1 .. n]):
A[0]←−∞
return LISfirst(0)− 1

20

2.8. The Woodcutter’s Problem

2.8 The Woodcutter’s Problem

Our final family of examples combine recursive backtracking with the divide-
and-conquer strategy.

Suppose you want to build a house for your new dog Fluffy. Your friend,
who happens to be a master carpenter, has given you a long plank of wood,
helpfully marked at n− 1 places where you should cut the plank into the n
shorter boards you actually need to build Fluffy’s doghouse. Since you don’t own
a saw, and your friend is out of town, you drive your plank down to Woodchuck
& Woodchuck Woodcutters. Woodchuck & Woodchuck charge more to cut
longer planks, at a rate of $1 per foot. For example, they charge $13 to cut a
13-foot-long plank, but only $1.50 to cut a 1½-foot-long plank.

The total price for all n− 1 cuts depends on the order in which the cuts are
made. For example, suppose your plank is 10 feet long, and there are three
marks, placed 2 feet, 3 feet, and 6 feet from the left end of the plank, as shown
in Figure 2.7.
• Making the cuts in order from left to right costs a total of $25.
• Making the cuts in order from right to left costs a total of $19. This is the

cheapest sequence of cuts.
• Making the middle cut first and then the other two (in either order) costs a

total of $20.
2 1 3 4

$10

$8

$7

$10

$6

$3

$10

$3

$7

0 2 3 6 10

Figure 2.7. Three ways to cut a marked plank into four pieces, with total costs $25, $19, and $20.

More generally, suppose we are given a positive integer n, representing
the desired number of boards, and a sorted array L[1 .. n] of positive numbers,
where L[i] is the length of the ith board. How would we find a sequence of cuts
with minimum total cost?

Perhaps the first thing to realize is that we aren’t actually looking for a
sequence of cuts at all, but rather a binary tree of cuts. The first cut decomposes
our plank of wood into two “subplanks”, each with its own series of cuts. The
total cost to decompose our plank is the length of the plank (the cost of the first

21

2. BACKTRACKING

cut) plus the total cost to decompose each of the subplanks. It follows that the
minimum total cost is the length of the plank, plus the minimum total cost to
decompose the left subplank, plus the minimum total cost to decompose the
right subplank. In other words, the first cut gives us two completely independent
recursive subproblems.

More generally, for any indices i < k, let OptCost(i, k) denote the minimum
total cost to decompose a subplank consisting of boards i through k, which has
k − i marks. Our original problem is to compute OptCost(1, n). The OptCost
function obeys the following recurrence:

OptCost(i, k) =











0 if i = k
k
∑

j=i

L[j] + min
i≤r<k

¨

OptCost(i, r − 1)
+ OptCost(r, k)

«

otherwise

The base case correctly indicates that the total cost to decompose a plank with
no marks is zero. In the recursive case, the summation gives us the cost of the
first cut, and r is the index of the first piece to the right of the first cut.

This recursive definition can be translated mechanically into a recursive
backtracking algorithm to compute OptCost(1, n). The algorithm considers all
possible choices for the position r of the first cut, recursively computes the
minimum cost to decompose the two subplanks for each of those choices, and
finally returns the smallest total cost over all r.

Not surprisingly, the running time of this algorithm is exponential. In the
next chapter, we’ll see how to reduce the running time to polynomial, so there’s
not much point in computing the precise running time. . .

♥Analysis

. . . unless you’re into that sort of thing. Just for the fun of it, let’s figure out
how slow this backtracking algorithm actually is. The running time of our
backtracking algorithm satisfies the recurrence

T (n) =
n−1
∑

ℓ=1

�

T (ℓ) + T (n− ℓ)
�

+ O(n).

Here ℓ represents the number of pieces to the ℓeft of the first cut. The O(n)
term is the time to compute the total plank length

∑n
i=1 L[j]. Yeah, that’s one

ugly recurrence, but we can solve it using exactly the same subtraction trick we
used before. We replace the O() notation with an explicit constant, regroup
and collect identical terms, subtract the recurrence for T (n−1) to get rid of the
summation, and then regroup again.

T (n) = 2
n−1
∑

ℓ=1

T (ℓ) +αn

22

Exercises

T (n− 1) = 2
n−2
∑

ℓ=1

T (ℓ) +α(n− 1)

T (n)− T (n− 1) = 2T (n− 1) +α

T (n) = 3T (n− 1) +α

Hey, that doesn’t look so bad after all. The recursion tree method immediately
gives us the solution T(n) = O(3n) (or we can just guess and confirm by
induction).

This analysis implies that even though our recursive backtracking algorithm
finds the best binary tree of cuts, it does not examine all possible binary trees!
The number of binary trees with n vertices satisfies the recurrence

N(n) =
n−1
∑

r=1

�

N(r − 1) · N(n− r)
�

,

which has the closed-form solution N(n) = Θ(4n/n3/2). (No, that’s not obvious.)
Our algorithm saves considerable time by searching independently for the optimal
left and right subtrees for each root. A full enumeration of binary trees would
consider all possible pairs of left and right subtrees; hence the product in the
recurrence for N(n).

Exercises

1. Describe recursive algorithms for the following generalizations of the Sub-
setSum problem:
(a) Given an array X [1 .. n] of positive integers and an integer T , compute

the number of subsets of X whose elements sum to T .
(b) Given two arrays X [1 .. n] and W [1 .. n] of positive integers and an

integer T , where each W [i] denotes the weight of the corresponding
element X [i], compute the maximum weight subset of X whose elements
sum to T . If no subset of X sums to T , your algorithm should return−∞.

2. Describe recursive algorithms for the following variants of the text segmen-
tation problem. Assume that you have a subroutine IsWord that takes an
array of characters as input and returns True if and only if that string is a
“word”.
(a) Given an array A[1 .. n] of characters, compute the number of partitions

of A into words. For example, given the string ARTISTOIL, your algorithm
should return 2, for the partitions ARTIST·OIL and ART·IS·TOIL.

23

2. BACKTRACKING

(b) Given two arrays A[1 .. n] and B[1 .. n] of characters, decide whether A
and B can be partitioned into words at the same indices. For example,
the strings BOTHEARTHANDSATURNSPIN and PINSTARTRAPSANDRAGSLAP
can be partitioned into words at the same indices as follows:

BOT·HEART·HAND·SAT·URNS·PIN
PIN·START·RAPS·AND·RAGS·LAP

(c) Given two arrays A[1 .. n] and B[1 .. n] of characters, compute the number
of different ways that A and B can be partitioned into words at the same
indices.

3. An addition chain for an integer n is an increasing sequence of integers
that starts with 1 and ends with n, such that each entry after the first
is the sum of two earlier entries. More formally, the integer sequence
x0 < x1 < x2 < · · ·< xℓ is an addition chain for n if and only if
• x0 = 1,
• xℓ = n, and
• for every index k > 0, there are indices i ≤ j < k such that xk = x i + x j .

The ℓength of an addition chain is the number of elements minus 1; we
don’t bother to count the first entry. For example, 〈1, 2,3, 5,10, 20,23, 46,
92, 184,187, 374〉 is an addition chain for 374 of length 11.
(a) Describe a recursive backtracking algorithm to compute a minimum-

length addition chain for a given positive integer n. Don’t analyze or
optimize your algorithm’s running time, except to satisfy your own
curiosity. A correct algorithm whose running time is exponential in n is
sufficient for full credit. [Hint: This problem is a lot more like n Queens
than text segmentation.]

♥(b) Describe a recursive backtracking algorithm to compute a minimum-
length addition chain for a given positive integer n in time that is
sub-exponential in n. [Hint: You may find the results of certain Egyptian
rope-fasteners, Indus-River prosodists, and Russian peasants helpful.]

4. (a) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common subsequence
of A and B is both a subsequence of A and a subsequence of B. Give
a simple recursive definition for the function lcs(A, B), which gives the
length of the longest common subsequence of A and B.

(b) Let A[1 .. m] and B[1 .. n] be two arbitrary arrays. A common super-
sequence of A and B is another sequence that contains both A and B
as subsequences. Give a simple recursive definition for the function
scs(A, B), which gives the length of the shortest common supersequence
of A and B.

24

Exercises

(c) Call a sequence X [1 .. n] of numbers bitonic if there is an index i with
1 < i < n, such that the prefix X [1 .. i] is increasing and the suffix
X [i .. n] is decreasing. Give a simple recursive definition for the function
lbs(A), which gives the length of the longest bitonic subsequence of an
arbitrary array A of integers.

(d) Call a sequence X [1 .. n] oscillating if X [i]< X [i + 1] for all even i, and
X [i] > X [i + 1] for all odd i. Give a simple recursive definition for
the function los(A), which gives the length of the longest oscillating
subsequence of an arbitrary array A of integers.

(e) Give a simple recursive definition for the function sos(A), which gives
the length of the shortest oscillating supersequence of an arbitrary array
A of integers.

(f) Call a sequence X [1 .. n] convex if 2 · X [i]< X [i − 1] + X [i + 1] for all i.
Give a simple recursive definition for the function lxs(A), which gives
the length of the longest convex subsequence of an arbitrary array A of
integers.

5. For each of the following problems, the input consists of two arrays X [1 .. k]
and Y [1 .. n] where k ≤ n.
(a) Describe a recursive backtracking algorithm to determine whether X is

a subsequence of Y . For example, the string PPAP is a subsequence of
the string PENPINEAPPLEAPPLEPEN.

(b) Describe a recursive backtracking algorithm to find the smallest number
of symbols that can be removed from Y so that X is no longer a
subsequence. Equivalently, your algorithm should find the longest
subsequence of Y that is not a supersequence of X . For example, after
removing removing two symbols from the string PENPINEAPPLEAPPLEPEN,
the string PPAP is no longer a subsequence.

♥(c) Describe a recursive backtracking algorithm to determine whether X
occurs as two disjoint subsequences of Y . For example, the string PPAP ap-
pears as two disjoint subsequences in the string PENPINEAPPLEAPPLEPEN.

Don’t analyze the running times of your algorithms, except to satisfy your
own curiosity. All three algorithms run in exponential time; we’ll improve
that later, so the precise running time isn’t particularly important.

6. In many applications of binary search trees, it is more important to minimize
the total cost of several searches rather than the worst-case cost of a single
search. Rather than building a balanced binary search tree, we want a
tree that is unbalanced in the best possible way—intuitively, with more
frequent search targets closer to the root. This problem asks you to design

25

2. BACKTRACKING

backtracking algorithms to find the smallest possible cost of a binary search
tree, possibly with to some additional balance constraints.

To keep things simple, suppose our search keys are just the integers
1 through n. Suppose we are given an array f [1 .. n] of access frequencies.
Our task is to build the binary search tree with minimum total search time,
assuming that there will be exactly f [i] searches for each key i.

In any binary search tree T , there is exactly one vertex whose search
key is i; call this vertex “node i”. The standard algorithm for finding search
key i in T spends constant time at every ancestor of node i, including node i
itself. So ignoring constant factors, the total cost of all binary searches is

Cost(T, f [1 .. n]) =
n
∑

i=1

f [i] ·#ancestors of node i in T

Our task is to find a binary search tree T that minimizes this cost.
(a) Prove that the total cost function obeys the recurrence

Cost(T, f [1 .. n])

=
n
∑

i=1

f [i] + Cost(T.left, f [1 .. r − 1]) + Cost(T.right, f [r + 1 .. n])

when the root of T is node r. (The base case for this recurrence is n= 0;
the total cost of performing no searches in the empty tree is zero!)

(b) Describe a recursive backtracking algorithm to construct an optimal
binary search tree for a given set of search keys and frequencies. [Hint:
This should smell like the woodcutter’s problem. After all, trees are
made of wood!]

(c) AVL trees were the earliest self-balancing balanced binary search trees,
first described in 1962 by Georgy Adelson-Velsky and Evgenii Landis. An
AVL tree is a binary search tree where for every node v, the height of
the left subtree of v and the height of the right subtree of v differ by at
most one.

Describe a recursive backtracking algorithm to construct an optimal
AVL tree for a given set of search keys and frequencies.

(d) Symmetric binary B-trees are another self-balancing binary trees, first
described by Rudolf Bayer in 1972; these are better known by the name
red-black trees, after a somewhat simpler reformulation by Leo Guibas
and Bob Sedgwick in 1978. A red-black tree is a binary search tree with
the following additional constraints:
• Every node is either red or black.

26

Exercises

• Every red node has a black parent.
• Every root-to-leaf path contains the same number of black nodes.
Describe a recursive backtracking algorithm to construct an optimal
red-black tree for a given set of search keys and frequencies.

(e) AA trees were proposed by proposed by Arne Andersson in 1993 and
slightly simplified (and named) byMark AllenWeiss in 2000. AA trees are
also known as left-leaning red-black trees, after a symmetric reformulation
(with different rebalancing algorithms) by Bob Sedgewick in 2006. An
AA tree is a red-black tree with one additional constraint:
• No left child is red.13

Describe a recursive backtracking algorithm to construct an optimal AA
tree for a given set of search keys and frequencies.

Don’t analyze the running times of your algorithms, except to satisfy your
own curiosity. All three algorithms run in exponential time; we’ll improve
that later, so the precise running times aren’t particularly important.

For more backtracking exercises, see the next chapter!

13Sedgwick’s reformulation requires that no right child is red. Whatever. Andersson and
Sedgwick are strangely silent on which end of the egg to eat first.

27

	Backtracking
	N Queens
	Game Trees
	Subset Sum
	The General Pattern
	Text Segmentation (Interpunctio Verborum)
	Longest Increasing Subsequence
	Longest Increasing Subsequence, Take 2
	The Woodcutter’s Problem
	Exercises

