
CS 473 Practice Midterm 2 Solutions Fall 2024

1. Let T be a treap with n≥ 2 vertices.

(a) What is the exact expected number of leaves in T?

Solution: Node k is a leaf if and only if its priority is smaller than the priorities
of its neighbors in rank order: node k− 1 (unless k = 1) and node k+ 1 (unless
k = n). Thus,

Pr[node k has no children] =

1 if k = n= 1

1/2 if n> 1 and (k = 1 or k = n)
1/3 otherwise

Linearity of expectation now implies that

E[number of nodes with no children]

=
n
∑

k=1

Pr[node k has no children]

=
n+ 1

3

■

Rubric: 3 points = 1½ for answer + 1½ for proof. Max 1 point forΘ(n) solution with wrong (or
missing) constant factor. Max 2 points for n/3±Θ(1) solution with wrong constant term. No
penalty for ignoring the special case n= 1.

(b) What is the exact expected number of nodes in T that have two children?

Solution: Node k has two children if and only if 1< k < n and the priority of
node k is larger than the priorities of both nodes k− 1 and k+ 1. Thus,

Pr[node k has two children] =
¨

0 if k = 1 or k = n

1/3 otherwise

Linearity of expectation now implies that

E[number of nodes with two children]

=
n
∑

k=1

Pr[node k has two children]

=
n− 2

3

■

Rubric: 3 points; same partial credit as part (a).

1

CS 473 Practice Midterm 2 Solutions Fall 2024

(c) What is the exact expected number of nodes in T that have exactly one child?

Solution: By linearity of expectation, the expected number of nodes with one
child is equal to n (the total number of nodes) minus the expected number of
nodes with zero or two children:

n−
n+ 1

3
−

n− 2
3
=

n+ 1
3

■

Solution: Node k has one child if and only if n> 1 and the priority of node k is
smaller than exactly one of nodes k− 1 and k+ 1. Thus,

Pr[node k has one child] =

0 if n= k = 1

1/2 if n> 1 and (k = 1 or k = n)
1/3 otherwise

Linearity of expectation now implies

E[number of nodes with one child]

=
n
∑

k=1

Pr[node k has one child]

=
n+ 1

3

■

Rubric: 4 points = 3 points for correct exact answer (same partial credit as part (a)) + 1 point for
exact answer equal to n− part (a)− part (b). No proof is required.

2

CS 473 Practice Midterm 2 Solutions Fall 2024

2. (a) Describe and analyze an efficient algorithm that either assigns each ghost a distinct
house that they can haunt, or correctly reports that such an assignment is impossible.

Solution: We build a bipartite graph G = (L ⊔ R, E), where L is the set of n
ghosts, R is the set of m houses, and i j ∈ E if and only if ghost i can haunt
house j. Then we compute a maximum matching in the graph, as described in
class, in O(V E) = O(n3) time. Finally, if this matching has n edges, we return
True; otherwise, we return False. ■

Rubric: 5 points = 2 for setting up the graph + 2 for maximummatching + 1 for running time as
a function ofm and n.

(b) Suppose every ghost is assigned to a distinct house that they cannot haunt. Describe
and analyze an efficient algorithm to compute an exchange that results in a valid
assignment of ghosts to houses.

Solution (alternating cycle): We set up the same bipartite graph G as in part (a).
Beetlejuice’s assignment corresponds to a set of edges that are missing from G;
call this set of non-edges B. Compute a maximum matching M in G, in
O(V E) = O(n3) time, as described in class.

Now consider the graph M ∪ B. Every vertex in G′ is incident to exactly
one edge in M and exactly one edge in B. Thus, every vertex of M ∪ B has
degree 2, which implies that M ∪ B consists entirely of disjoint simple cycles,
which alternate between M and B.

Direct the vertices in B from ghost to house, and direct the vertices in M
from house to ghost. Finally, for each ghost i, let GiveTo[i] be the ghost vertex
reached from vertex i by following two directed edges (first in B and second
in M).

The overall algorithm runs in O(n3) time. ■

Rubric: 5 points = 2 for buildingM ∪B + 2 for pointer-jumping + 1 for running time as a function
of n. +1 extra credit if the algorithm is still correct whenm ̸= n.

3

CS 473 Practice Midterm 2 Solutions Fall 2024

3. Suppose we hash a set of n items into a table of size m = 2n, using a hash function h
chosen uniformly at random from some universal family. Assume pn is an integer.

(a) Prove that the expected number of collisions is at most n/4.

Solution: Without loss of generality, assume the items to be hashed are the
integers 1, 2, . . . , n, and let X denote the total number of collisions.

E[X] =
∑

1≤i< j≤n

Pr[h(i) = h(j)] [linearity of expectation]

≤
∑

1≤i< j≤n

1
2n

[definition of “universal”]

=
n(n− 1)

2
1

2n
=

n− 1
4
<

n
4

[algebra] ■

Rubric: 3 points

(b) Prove that the probability that there are at least n/2 collisions is at most 1/2.

Solution: Part (a) implies n/2 > 2 E[X] and thus Pr[X > n/2] ≤ Pr[X >
2 E[X]], and Markov’s inequality gives us Pr[X > 2E[X]]≤ 1/2. ■

Rubric: 2 points

(c) Prove that the probability that any subset of more than pn items all hash to the same
address is at most 1/2. [Hint: Use part (b).]

Solution: Every pair of items that hashes to the same address collides. Thus, if
any subset of k items hash to the same address, there are at least

�k
2

�

= k(k−1)/2
collisions. In particular, if any subset of pn+ 1 items hash to the same address,
the number of collisions is at least

�p
n+ 1
2

�

=
p

n(
p

n+ 1)
2

>
n
2

.

The claim now follows immediately from part (b). ■

Rubric: 2 points

(d) Now suppose we choose h at random from a 4-uniform family of hash functions,
which means for all distinct items w, x , y, z and all addresses i, j, k, l, we have

Pr
h∈H

�

h(w) = i ∧ h(x) = j ∧ h(y) = k ∧ h(z) = ℓ
�

=
1

m4
.

Prove that the probability that any subset of more than pn items all hash to the same
address is at most O(1/n).

4

CS 473 Practice Midterm 2 Solutions Fall 2024

Solution: 4-uniformity implies that E[X] is actually equal to (n− 1)/4, not just
at most (n− 1)/4 as in part (a). Because the hash function is 4-uniform, the
collision events [h(i) = h(j)] are pairwise independent. (Every pair of collisions
involves at most four different items!) Thus, Chebyshev’s inequality implies

Pr[X > 2 E[X]]<
1

E[X]
=

4
n− 1

= O(1/n).

■

Rubric: 3 points

5

CS 473 Practice Midterm 2 Solutions Fall 2024

4. (a) Describe an algorithm to simulate one roll of a fair 20-sided die using independent
rolls of a fair 6-sided die and no other source of randomness.

(b) What is the exact expected number of 6-sided-die rolls executed by your algorithm?
(c) Derive an upper bound on the probability that your algorithm requires more than N

rolls. Express your answer as a function of N .
(d) Estimate the smallest number N such that the probability that your algorithm requires

more than N rolls is less than δ. Express your answer as a function of δ.

Solution (simple rejection sampling): Generate an integer z uniformly between 1
and 36 using two die rolls. If z ≤ 20, then return z; otherwise, start over.

RollD20():
x ← Random(6)
y ← Random(6)
z← 6(x − 1) + y
〈〈z is uniform in 1 .. 36〉〉
if z ≤ 20

return z
else

RollD20()

Each trial uses two die rolls and succeeds with probability 20/36 = 5/9. So the
expected number of die rolls satisfies the equation

X = 2+
4
9

X =⇒ X =
18
5
= 3.6 .

Let PN denote the probability that we need more than N rolls; we immediately have

PN =
�

4
9

�⌊N/2⌋
=

¨

(2
3)

N if N is even
(2

3)
N−1 if N is odd

So to succeed in at most N rolls with probability at least 1−δ, it suffices to set

δ =
�

2
3

�N

=⇒ N = log2/3δ = log3/2
1
δ
≈ 2.4663 ln(1/δ) = Θ

�

log
1
δ

�

■

Rubric: 10 points = 4 for part (a) + 2 for part (b) + 2 for part (c) + 2 for part (d). +1 extra credit for an
algorithm where the answer to part (b) is less than 3. Answers to (b), (c), and (d) must match the
algorithm in part (a) to receive full credit. Only the expressions in boxes are required for full credit.

6

CS 473 Practice Midterm 2 Solutions Fall 2024

Solution (factored rejection sampling): Generate an integer x uniformly between
1 and 4 and another integer y uniformly between 1 and 5.

RollD20():
〈〈x ← Random(4)〉〉
repeat

x ← Random(6)
until x ≤ 4

〈〈y ← Random(5)〉〉
repeat

y ← Random(6)
until y ≤ 5

〈〈Combine x and y〉〉
return 5(x − 1) + y

Let X be the expected number of rolls in the first loop, and let Y be the expected
number of rolls in the second loop. We immediately have

X = 1+
X
3
=⇒ X =

3
2

Y = 1+
Y
6
=⇒ Y =

6
5

So the total expected number of rolls is 3/2+ 6/5= 27/10= 2.7 .
Let PN denote the probability that we need more than N rolls. If we need more

than N rolls, then we need more than N/2 rolls in at least one of the two loops. It
follows that

PN ≤
1

3N/2
+

1
6N/2

So to succeed in at most N rolls with probability at least 1−δ, it suffices to set

δ =
1

3N/2
=⇒ N = 2 log3

�

1
δ

�

≈ 1.8204 ln(1/δ) = Θ
�

log
1
δ

�

■

7

CS 473 Practice Midterm 2 Solutions Fall 2024

Solution (Optimal! better factored rejection sampling): We can improve the pre-
vious solution by using a better algorithm to simulate a 4-sided die:

RollD20():
〈〈x ← Random(4)〉〉
p← Random(6)
if p ≤ 4

x ← p
else

x ← 1+ 2 · [p = 6] + [Random(6)> 3]
〈〈y ← Random(5)〉〉
repeat

y ← Random(6)
until y ≤ 5

〈〈Combine x and y〉〉
return 5(x − 1) + y

Let X be the expected number of rolls to generate x , and let Y be the expected number
of rolls to generate y . We immediately have

X = 1+
1
3
=

4
3

Y = 1+
Y
6
=⇒ Y =

6
5

So the total expected number of rolls is 4/3 + 6/5 = 38/15≈ 2.53333 . This
expected number of rolls is actually optimal!

Let PN denote the probability that we need more than N rolls. For any N > 1, We
need more than N rolls if and only if one of the following disjoint events occurs:

• We generate x with only one roll, and we need more than N −1 rolls to generate
y .

• We generate x with two rolls, and we need more than N − 2 rolls to generate y .

It follows that P0 = P1 = 1

PN =
2
3
·

1
6N−1

+
1
3
·

1
6N−2

=
16
6N

for all N ≥ 2. This algorithm is in fact optimal! For any N > 1, exactly 6N mod 20=
16 outcomes from the first N rolls do not produce output, which is the least possible.

So to succeed in at most N rolls with probability at least 1−δ, it suffices to set

δ =
16
6N
=⇒ N = log6

�

16
δ

�

≈ 0.5581 ln N + 1.5474= Θ
�

log
1
δ

�

■

8

CS 473 Practice Midterm 2 Solutions Fall 2024

Solution (Optimal! 4 · 20 = 5 · 16 = 80):

RollD20():
z← 6 · (Random(6)− 1) +Random(6) 〈〈z is uniform in 1 .. 36〉〉
if z ≤ 20

return z
r ← z − 20 〈〈r is uniform in 1 .. 16〉〉
repeat forever:

x ← Random(6)
if x ≤ 5

y ← 5(r − 1) + x 〈〈y is uniform in 1 .. 80〉〉
return (y mod 20) + 1

Let X be the expected total number of rolls executed by this algorithm, and let Y be
the expected number of rolls in the main repeat-forever loop. We immediately have

Y = 1+
Y
6
=⇒ Y =

6
5

.

The main loop is executed with probability 16/36= 4/9, so

X = 2+
4
9

Y =
38
15
≈ 2.53333 .

This expected number of rolls is actually optimal!

Let PN denote the probability that we need more than N rolls; we immediately
have

PN =

¨

1 if N = 1
4
9

�1
6

�N−2 otherwise

Alternatively, we can observe that for any N > 1, there are 6N possible outcomes for
the first N rolls, and exactly 16 of those outcomes do not produce output: the 16
possible rolls of the first two dice that don’t immediately terminate, followed by N −2
6s. Thus,

PN =

¨

1 if N = 1
16
6N otherwise

This algorithm is in fact optimal! For any N > 1, exactly 6N mod 20= 16 outcomes
from the first N rolls do not produce output, which is the least possible.

So to succeed in at most N rolls with probability at least 1−δ, it suffices to set

δ =
16
6N
=⇒ N = log6

�

16
δ

�

≈ 0.5581 ln N + 1.5474= Θ
�

log
1
δ

�

■

9

