
CS 473 6 Fall 2024
Midterm 2 Problem 1 Solution

Suppose you have access to a source that generates independent random bits, each equal to 1
with probability p. Consider the following game: In each round, you generate two bits using your
random source and compute the AND of those two bits. If the AND is 1, the game immediately
ends; otherwise, you continue to the next round. Let X denote the number of rounds until the
game ends.

(a) What is the exact value of E[X ]?
(b) What is the exact value of E[X 2]? [Hint: Use a recursive definition of X .]

Prove that both your answers are correct.

Solution (via recursion):

(a) The game always lasts for at least one round. The first round ends the game if and
only if both of the first two bits are 1, which happens with probability p2. Thus, with
probability 1− p2, the game starts over after the first round. We conclude that

E[X ] = 1+ (1− p2) · E[X ] =⇒ E[X ] =
1
p2

(b) We use the following recursive characterization: X = 1 with probability p2, and
X = 1+ Y with probability 1− p2, where Y is another random variable with exactly
the same distribution as X . Thus,

E[X 2] = p2 + (1− p2) · E[(1+ Y )2]

= p2 + (1− p2) · E[(1+ X )2] [X and Y have same dist.]
= p2 + (1− p2) · E[1+ 2X + X 2] [math]
= p2 + (1− p2) ·

�

1+ 2E[X ] + E[X 2]
�

[linearity]
= p2 + (1− p2) + (1− p2) · 2 E[X ] + (1− p2)E[X 2] [math]

= p2 + (1− p2) +
2(1− p2)

p2
+ (1− p2)E[X 2] [part (a)]

=
2− p2

p2
+ (1− p2)E[X 2] [math]

It follows that

p2 · E[X 2] =
2− p2

p2
=⇒ E[X 2] =

2− p2

p4

■
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CS 473 Midterm 2 Problem 1 Solution Fall 2024

Solution (via direct calculation):

(a) For each positive integer k, define an indicator variable Xk that equals 1 if and only if
the game lasts for at least k rounds. Then the total number of rounds is X =

∑

k≥1 Xk,
which implies

E[X ] =
∑

k

Pr[Xk = 1] =
∑

k≥1

(1− p2)k−1 =
∑

j≥0

(1− p2) j =
1

1− (1− p2)
=

1
p2

(b) Again, let Xk = 1 if and only if the game lasts at least k rounds. For any k, we have
Xk − Xk+1 = 1 if and only if the game lasts exactly k rounds.

X 2 =
∑

k≥1

k2(Xk − Xk+1)

=
∑

k≥1

k2Xk −
∑

k≥1

k2Xk+1

=
∑

k≥1

k2Xk −
∑

k≥1

(k− 1)2Xk

=
∑

k≥1

(2k− 1)Xk

= 2
∑

k≥1

kXk − X

Taking expectations, we find

E[X 2] = 2
∑

k≥1

k · Pr[Xk = 1]− E[X ] = 2 ·
∑

k≥1

k · (1− p2)k−1 −
1
p2

Let’s call the boxed summation S and evaluate it separately.

S =
∑

k≥1

k · (1− p2)k−1

=
∑

k≥1

(k− 1) · (1− p2)k−1 +
∑

k≥1

(1− p2)k−1

=
∑

j≥0

j · (1− p2) j +
∑

j≥0

(1− p2) j

= (1− p2)
∑

j≥0

j · (1− p2) j−1 +
∑

j≥0

(1− p2) j

= (1− p2) · S +
1
p2

It follows that p2S = 1/p2, and thus S = 1/p4. Plugging this value back into our earlier
expression, we conclude that

E[X 2] =
2
p4
−

1
p2

■
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Solution (via probability knowledge):

(a) For any natural number k, we have Pr[X = k] = p2(1− p2)k−1. Thus, X is a geometric
random variable with success probability p2. It follows immediately that

E[X ] =
1
p2

(b) Recall that the variance of X is Var(X ) = E[X 2]− (E[X ])2. Because X is a geometric
random variable with success probability p2, its variance is Var(X ) = 1−p2

p4 . Our solution
to part (a) implies (E[X ])2 = 1

p4 . We conclude that

E[X 2] = (E[X ])2 + Var(X ) =
1
p4
+

1− p2

p4
=

2− p2

p4

■

Rubric: 10 points = 5 for part (a) + 5 for part (b). This is more detail than necessary for full credit. These are
not the only correct proofs.
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CS 473 6 Fall 2024
Midterm 2 Problem 2 Solution

Let U = {1,2, . . . , n} be a universe of n elements. Let S1, . . . , Sm be m subsets of U , each with
size |Si|= n/10. We call another set of elements X ⊆ U a covering set if X contains at least one
element of each subset Si. Suppose we randomly generate X by independently including each
element of U with probability p = (c log m)/n, for some constant c ≥ 1000.

(a) Prove that for any fixed index i, the set X intersects Si with probability at least 1− 1/m3.

(b) Prove that X contains at most c2 log m elements with probability at least 1− 1/m2.

(c) Prove that X is a covering set of size O(log m) with probability at least 1− 1/m.

Solution: Let’s assume that log means ln= loge.

(a) Because each element of Si is independently included or excluded from X , we have

Pr[X ∩ Si =∅] = (1− p)n/10 =
�

1−
c log m

n

�n/10

≤ e−(c log m)/10

by The World’s Most Useful Inequality. Setting c = 1000 gives us

Pr[X ∩ Si =∅] ≤ e−100 log m =
1

m100
≤

1
m3

.

(b) We immediately have
E[|X |] = pn = c log m,

and therefore
Pr
�

|X |> c2 log m
�

= Pr
�

|X |> c · E[|X |]
�

Because |X | is a sum of independent indicator variables, one for each element of U , the
Chernoff bound Pr[|X |> (1+δ)µ]< e−δµ/2 with δ = c − 1 implies

Pr
�

|X |> c · E[|X |]
�

≤ e−((c−1)c log m)/2

Finally, setting c = 1000 gives us

e−((c−1)c log m)/2 ≤ e−499500 log m =
1

m499500
≤

1
m2

.

(c) X is not a covering set of size at most c2 log n if and only if either (1) X ∩ Si = ∅ for
some index i, or (2) |X |> c2 log m. Parts (a) and (b) and the union bound imply that X
is not a covering set of size at most c2 log n with probability at most

m
m3
+

1
m2
=

2
m2
≤

1
m

.
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(The last inequality breaks down when m= 1, but in that csae the probability is trivially
at most 1/m= 1.) ■

Rubric: 10 points = 4 for part (a) + 4 for part (b) + 2 for part (c). This is more detail than necessary for full
credit.
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CS 473 6 Fall 2024
Midterm 2 Problem 3 Solution

You are planning an election in a city with n voters and m polling stations. You need to assign
each voter to a single polling station where they can cast their vote. Each voter must be assigned
a polling station within 5 miles of their residence, but at most 1000 voters can vote at any single
polling station.

You have access to a function CloseEnough(i, j) that returns True if voter i lives within
5 miles of polling station j, and returns False otherwise, in constant time. Describe an algorithm
that either finds a legal assignment of polling stations to voters, or correctly reports that no such
assignment exists.

Solution (reduce to matching): First build a bipartite graph G = (V ⊔P, E) with one vertex
for each voter and 1000 vertices p j,1, p j,2, . . . , p j,1000 for each polling station j, and an edge
vi p j,k if and only if CloseEnough(i, j) = True. Altogether, G has n+ 1000m= O(n+m)
vertices and at most 1000mn= O(mn) edges.

Then find a maximum matching M in G in O(V E) time, as described in class. If M has n
edges, then for each edge vi p j,k in M , assign voter i to polling station j. Otherwise, report
that no legal assignment is possible.

The overall algorithm runs in O(V E) = O((n +m)mn) time. ■

Solution (reduce to maximum flow): First build a flow network G = (V, E) with four
types of vertices

• a source vertex s,
• a vertex vi for each voter i,
• a vertex p j for each polling station j, and
• a target vertex t;

and three types of edges:

• an edge s�vi for each voter i, with capacity 1,
• an edge vi�p j for each voter i and polling station j such that CloseEnough(i, j) =

True, with capacity 1,
• an edge p j�t for each polling station j, with capacity 1000.

Altogether G has 2+ n+m= O(n+m) vertices and at most n+m+mn= O(mn) edges.
Then compute an integral maximum flow in G in O(V E) time (using Orlin’s algorithm).

If the maximum flow value is less than n, report that no legal assignment is possible.
Otherwise, for each edge vi�p j that carries positive flow, assign voter i to polling station j.

The overall algorithm runs in O(V E) = O((n +m)mn) time. ■

Solution (faster flows (11/10)): We can actually make the previous algorithm (slightly)
faster using off-the shelf Ford-Fulkerson instead of Orlin’s algorithm. The value of the
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CS 473 Midterm 2 Problem 3 Solution Fall 2024

maximum flow in G is at most n, so Ford-Fulkerson runs in O(E · | f ∗|) = O(mn2) time.
Everything else is faster, so the overall algorithm runs in O(mn2) time. ■

Rubric: 10 points: standard reduction rubric
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CS 473 6 Fall 2024
Midterm 2 Problem 4 Solution

Suppose you are given a 4CNF formula with n variables x1, . . . , xn and m≥ 100 clauses.

(a) Suppose we independently assign each variable x i to be TRUE or FALSE with equal probability.
What is the exact expected number of unsatisfied clauses under this assignment?

(b) Prove that the probability that at least m/16+ 1 clauses are unsatisfied is at most 1− C/m
for some constant C .

(c) Part (b) implies that under a random assignment, the number of satisfied clauses is at least
15m/16 with probability at least C/m. Using this fact, describe an efficient randomized
algorithm that always finds an assignment that satisfies at least 15m/16 clauses, and analyze
its expected running time.

Solution: Suppose we are given a 4CNF formula Φ= C1 ∧ C2 ∧ · · · ∧ Cm, where each C j is a
clause with four literals.

(a) For each index 1 ≤ j ≤ m, let X j = 1 if the random assignment does not satisfy the
clause C j and X j = 0 otherwise. Each clause C j if and only if all its literals are False.
Since each literal is True or False with equal probability, we have Pr[X j = 1] = 1/16.

Let X =
∑m

j=1 X j denote the number of unsatisfied clauses. The expected number of
unsatisfied clauses is exactly

E[X ] =
m
∑

j=1

Pr[X j = 1] =
m
16

(b) Markov’s inequality immediately implies

Pr[X ≥ m/16+ 1]≤
E[X ]

m/16+ 1

=
m/16

m/16+ 1
[part (a)]

= 1−
1

m/16+ 1
[math]

≤ 1−
1

m/8
[ 1

1+t ≥
1
2t ]

= 1−
8
m

[math]

(c) Our algorithm repeatedly generates and tests independent random assignments, until
we find one that satisfies at least 15m/16 clauses.

Each iteration of the algorithm takes O(m+n) time to generate a random assignment
and then check each clause by brute force. Part (b) implies that in each iteration, we
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generate a good assignment with probability at least 8/m. Let Y denote the number of
iterations required to find a good assignment; we have

E[Y ]≤ 1+ (1− 8/m)E[Y ] =⇒ E[Y ] = m/8.

Thus, our brute-force algorithm runs in O(m(m + n)) expected time. ■

Rubric: 10 points = 3 for part (a) + 3 for part (b) + 4 for part (c)
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