
CS 473 6 Fall 2024
Midterm 1 Problem 1 Solution

Prove that every integer (positive, negative, or zero) can be written in the form
∑

i ±3i, where
the exponents i are distinct non-negative integers.

Solution (direct induction): This notation is called balanced ternary.
Let n be an arbitrary integer. Assume that any non-negative integer m such that |m|< |n|

can be written in balanced ternary. There are four cases to consider.

• The base case n= 0 is trivial—zero is the empty sum.

• Suppose n= 3m for some integer m ̸= 0. Because |m|< |n|, the inductive hypothesis
implies that m can be written in balanced ternary. Shifting all exponents up by 1 gives
us a balanced ternary representation of n.

• Suppose n= 3m+ 1 for some integer m. Because |m|< |n|, the inductive hypothesis
implies that m can be written in balanced ternary. Shifting all exponents up by 1 and
adding 30 gives us a balanced ternary representation of n.

• Finally, suppose n = 3m− 1 for some integer m. Because |m| < |n|, the inductive
hypothesis implies that m can be written in balanced ternary. Shifting all exponents
up by 1 and subtracting 30 gives us a balanced ternary representation of n.

In all cases, we conclude that n can be written in balanced ternary. ■

Solution (induction and symmetry): This notation is called balanced ternary.
Let n be an arbitrary integer. If n can be written in balanced ternary, then obviously so

can −n, by inverting the sign of every term (or equivalently, by negating every trit). Thus,
without loss of generality, we can assume that n is non-negative.

We complete the proof by induction on n. Assume that any non-negative integer m< n
can be written in balanced ternary. There are two cases to consider.

• The base case n= 0 is trivial—zero is the empty sum.

• Otherwise, let m= ⌊(n+ 1)/3⌋; this is the integer closest to n/3. Because m< n, the
inductive hypothesis implies that m can be written in balanced ternary. Shifting all
exponents up by 1 gives us a balanced ternary representation of 3m that does not
include 30. There are three subcases to consider:

– If n= 3m, we’re done.
– If n= 3m+ 1, adding 30 gives us a balanced ternary representation of n.
– If n= 3m− 1, subtracting 30 gives us a balanced ternary representation of n.

In all cases, we conclude that n can be written in balanced ternary. ■

1-1

https://en.wikipedia.org/wiki/Balanced_ternary
https://en.wikipedia.org/wiki/Balanced_ternary

CS 473 Midterm 1 Problem 1 Solution Fall 2024

Rubric: 10 points = 2 for valid strong inductive hypothesis + 2 for explicit exhaustive case analysis + 1 for
base case(s) + 2 for correctly applying the stated induction hypothesis + 3 for other details of the inductive
case(s). These are not the only correct proofs.

A proof that only considers only non-zero integers is worth at most 9 points; only non-negative integers is
worth at most 7; only positive integers is worth at 6 points.

1-2

CS 473 6 Fall 2024
Midterm 1 Problem 2 Solution

Describe and analyze an algorithm to find the maximum number of points you can earn in a
Number Blast puzzle. (See the question handout for a detailed description of the rules.) The
input to your algorithm is an array A[1 .. 2n] of positive integers.

Solution (just like HW3.2): For any indices i and j such that j− i is odd, letMaxBlast(i, j)
denote the maximum score we can earn using only squares in the interval A[i .. j]. Consid-
ering all possible last moves (i′, j′) gives us the following recurrence:

MaxBlast(i, j) =

−∞ if j − i is even
0 if i = j + 1

max

A[i′] · A[j′]
+MaxBlast(i, i′ − 1)

+MaxBlast(i′ + 1, j′ − 1)

+MaxBlast(j′ + 1, j)

�

�

�

�

�

�

�

�

�

i ≤ i′ < j′ ≤ j

otherwise

We can memoize this function into a two-dimensional array. We can evaluate the array
using two nested for-loops, one decreasing i and the other increasing j. (It doesn’t matter
how these loops are nested.) The resulting algorithm runs in O(n4) time. ■

Solution (leftmost turn, 12/10): For any indices i and k such that k − i is odd, let
MaxBlast(i, k) denote the maximum score we can get earn using only squares in the
interval A[i .. k]. At some point during the puzzle, we must choose the leftmost square A[i]
along with another square A[j] with i < j ≤ k. Without loss of generality, this is the last
move of the puzzle! Considering all possible indices j gives us the following recurrence:

MaxBlast(i, k) =

−∞ if k− i is even
0 if i = k+ 1

max

A[i] · A[j]
+MaxBlast(i + 1, j − 1)

+MaxBlast(j + 1, k)

�

�

�

�

�

�

�

i < j ≤ k

otherwise

We can memoize this function into a two-dimensional array. We can evaluate the array
using two nested for-loops, one decreasing i and the other increasing k. (It doesn’t matter
which one is the inner loop.) The resulting algorithm runs in O(n3) time. ■

Rubric: 10 points; standard dynamic programming rubric. These are not the only correct solutions. These
solution includes more justification than necessary for full credit. An algorithm that runs in O(n4) time is
worth full credit. Max 12 points (yes, out of 10) for O(n3) time; max 8 points for O(n5) time; scale extra/partial
credit.

2-1

CS 473 6 Fall 2024
Midterm 1 Problem 3 Solution

(a) Describe an algorithm to determine the number of well-spaced triples in a given bit string
B[1 .. n].

(b) Describe an algorithm to determine the number of offset triples in a given bit string B[1 .. n].

Solution (part (a)): The following algorithm runs in O(n logn) time; the running time is
dominated by the initial convolution.

CountEvenTriples(B[0 .. n]):
BB← Convolution(B, B)
triples← 0
for j← 0 to n

if B[j] = 1
triples← triples+ ⌊BB[2 j]/2⌋

return triples

Justification: In any well-spaced triple {i, j, k}, the middle index j is the average of the
other two indices i and k, and without loss of generality i < j < k. Thus, if B[j] = 1, the
number of well-spaced triples with middle index j is equal to

∑

i+k=2 j
i< j<k

B[i] · B[k].

This is almost equal to the (2 j)th element of the convolution B ∗ B:

(B ∗ B)[2 j] =
∑

i+k=2 j

B[i] · B[k].

The latter sum actually counts well-spaced triples twice, once as {i, j, k} and again as
{k, j, i}; it also counts the degenerate triple { j, j, j}. So in fact, j is the middle index of c
evenly-spaced triples if and only if (B ∗ B)[2 j] = 2c + 1. ■

Rubric: 5 points = 2 for using FFT/convolution + 2 for correctly extracting the number of triples from the
convolution + 1 for time analysis. The justification is not required for full credit. This is not the only correct
solution.

3-1

CS 473 Midterm 1 Problem 3 Solution Fall 2024

Solution (part (b)): The following algorithm runs in O(n logn) time; the running time is
dominated by the initial convolution.

CountOffTriples(B[0 .. n]):
for i← 0 to n

BB[2i]← B[i]
BB[2i + 1]← 0

BBB← Convolution(BB, B)
triples← 0
for j← 0 to n

if B[j] = 1
triples← triples+ BBB[3 j]− 1

return triples

Justification: The indices of offset triple {i, j, k} satisfy the equation 3 j = 2i + k. Thus, if
B[j] = 1, the number of offset triples with middle index j is equal to

∑

2i+k=3 j
i ̸= j ̸=k

B[i] · B[k].

This is again almost equal one element of a convolution. Let BB be a copy of B interleaved
with 0’s, as shown in the pseudocode above. Then we have

(BB ∗ B)[3 j] =
∑

i′+k=3 j

BB[i′] · B[k]

=
∑

2i+k=3 j

BB[2i] · B[k] [i′ = 2i]

=
∑

2i+k=3 j

B[i] · B[k]

This sum includes the degenerate triple { j, j, j}, so we have to subtract 1 to get the actual
number of offset triples with middle index j. ■

Rubric: 5 points = 1 for using FFT/convolution + 2 for correctly setting up the convolution + 1 for correctly
computing the number of offset triples from the convolution + 1 for time analysis. The justification is not
required for full credit. This is not the only correct solution.

3-2

CS 473 6 Fall 2024
Midterm 1 Problem 4 Solution

Describe an algorithm that finds the smallest possible total badness for a given sequence of words.
The input to your algorithm consists of the positive integer M (the number of characters that fit
on a single line) and an array L[1 .. n], where L[i] is the length of the ith word.

Solution (word-by-word): Let MinBad(i, L) denote the smallest possible total badness
for words i through n, assuming we have room for L characters on the first line, and M
characters on every later line. We need to compute MinBad(1, M). This function satisfies
the following recurrence:a

MinBad(i, L) =

badness(L) if i > n

MinBad(i + 1, M − L[i]) if L = M

badness(L) +MinBad(i + 1, M − L[i]) if L[i]> L − 1

min

�

MinBad(i + 1, L − L[i]− 1)

badness(L) +MinBad(i + 1, M − L[i])

�

otherwise

The choices in the final recursive case correspond to putting a space followed by the ith
word on the current line, or starting a new line with the ith word. The −1s in red account
for the spaces between words.

We can memoize this function into a two-dimensional arrayMinBad[1 .. n, 0 .. M]. We can
evaluate this array using two nested loops, decreasing i in the outer loop and considering L
in any order in the inner loop. The resulting algorithm runs in O(nM) time. ■

aThis recurrence assumes that the paragraph layout must use at least one line. This assumption is trivial if n
is positive, but when n= 0, the correct value of MinBad(1, M) is arguably 0, not badness(M).

Solution (line-by-line, 11/10): Let PrefLen(j) =
∑ j

i=1 L[i] denote the sum of the first j
word lengths. We can compute all values of this function in O(n) time as follows:

PrefLen[0]← 0
for i← 1 to n

PrefLen[i]← PrefLen[i − 1] + L[i]

Now let LineLen(i, j) denote the length of a single line containing words i, i + 1, . . . , j. We
immediately have

LineLen(i, j) = PrefLen(j)− PrefLen(i − 1) + j − i

(The j − i term at the end counts the spaces between words.)
Finally, let MinBad(i) denote the smallest possible total badness for words i through n,

assuming every line has length M . We need to compute MinBad(1). This function satisfies

4-1

CS 473 Midterm 1 Problem 4 Solution Fall 2024

the following recurrence, which tries all possibilities for the first line:

MinBad(i) =

0 if i > n

min

¨

badness(M − LineLen(i, j))

+MinBad(j + 1)

�

�

�

�

�

i ≤ j ≤ n and
LineLen(i, j)≤ M

«

otherwise

We can memoize this function into an array MinBad[1 .. n], which we can fill in decreasing
index order. Because each word length is positive (or alternatively, thanks to the spaces
between words), each entry MinBad[i] depends on at most n and at most M later entries
MinBad[j]. Thus, the resulting algorithm runs in O(min{n2, nM}) time. ■

Rubric: 10 points: standard dynamic programming rubric. The explanations in gray are not required for full
credit. −1 for ignoring spaces between words. +1 extra credit for O(min{n2, nM}) time. (In practice, n> L
seems more likely than n< L, so this is a small improvement.) These are not the only correct solutions.

4-2

