
CS 473 Homework 6 Solutions Fall 2024

1. Consider a random walk on a path with vertices numbered 1,2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n.

(a) Prove that if we start at vertex 1, the probability that the random walk ends by falling
off the right end of the path is exactly 1/(n+ 1).

Solution: Let L(n) be the probability of falling off the Left end of a path of
length n, starting at vertex 1. This function satisfies the recurrence

L(n) =
1
2
+

1
2
· L(n− 1) · L(n)

The random walk falls off the left end of 1, 2, . . . , n if and only if (1) the first step
is to the left, or (2) the first step is to the right, then we fall off 2,3, . . . , n to the
left, and finally (recursively) we fall off 1, 2, . . . , n to the left. The base case of
the recurrence is L(1) = 1/2 (or, if you prefer, L(0) = 0).

The closed-form solution L(n) = n/(n+ 1) now follows by induction. Specifi-
cally, for any n> 1, the inductive hypothesis implies

L(n) =
1
2
+

1
2
·

n− 1
n
· L(n),

from which L(n) = n/(n+ 1) follows by straightforward algebra. ■

Solution: See part (b). ■

Rubric: 2 points = 1 for recurrence + 1 for solution. “See part (b)” is worth 2/3 of the score for
part (b), unless the part (b) solution relies on part (a).

(b) Prove that if we start at vertex k, the probability that the random walk ends by falling
off the right end of the path is exactly k/(n+ 1).

Solution: Let’s suppose the path includes vertices 0 and n + 1. Let R(n, k)
denote the probability that our random walk visits vertex n+ 1 before it visits
vertex 0, assuming we start at vertex k. We immediately have R(n, 0) = 0 and
R(n, n+ 1) = 1.

For all 1≤ k ≤ n, the rules of the random walk imply

R(n, k) =
1
2

R(n, k− 1) +
1
2

R(n, k+ 1).

In other words, the probabilities R(n, 0), R(n, 1), R(n, 2), . . . , R(n, n), R(n, n+ 1)
define an arithmetic sequence; the intermediate values are evenly spaced between
R(n, 0) = 0 and R(n, n+ 1) = 1. It follows that R(n, k) = k

n+1 for all k. ■
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Solution: Let’s add vertices 0 and n+ 1 to the ends of our path. Let R(n, k)
denote the probability that our random walk visits vertex n+ 1 before it visits
vertex 0, assuming we start at vertex k. I claim that R(n, k) = k

n+1 for all integers
n and k such that n> 0 and 0≤ k ≤ n+ 1.

Fix an arbitrary integers n and k such that n > 0 and 0 ≤ k ≤ n+ 1. As an
inductive hypothesis, assume R(m, j) = j

m+1 for all positive integers m and j
such that 0< m< n and 0≤ j ≤ m+ 1.

We immediately have R(n, 0) = 0 and R(n, n+ 1) = 1, so suppose 1≤ k ≤ n.
Any random walk from vertex k to vertex n+ 1 must consist of a random walk
from vertex k to vertex n, followed by an independent random walk from vertex n
to vertex n+ 1. Thus,

R(n, k) = R(n− 1, k) · R(n, n)

= R(n− 1, k) ·
n

n+ 1
[from part (a)]

=
k
n
·

n
n+ 1

[induction hypothesis]

=
k

n+ 1

In all cases, we conclude that R(n, k) = k
n+1 , as required. ■

Rubric: 3 points. A proof that relies on part (a) is worth full credit, but only if a standalone
solution is given for part (a).

(c) Prove that if we start at vertex 1, the expected number of steps before the random
walk ends is exactly n.

Solution: Let S(n) be the expected number of steps before the random walk
ends, assuming we start at vertex 1. We immediately observe that S(0) = 0 and
S(1) = 1.

So assume n≥ 2. In the first step, either the random walk ends immediately,
or it enters the interior path from 2 to n− 1. In the latter case, the random walk
eventually leaves this shorter path, after which we are once again at the end of a
path of length n. Linearity of expectation now implies

S(n) =
1
2
· 1+

1
2
· (1+ S(n− 2) + S(n))

or equivalently, S(n) = S(n−2)+2. The closed form S(n) = n follows immediately
by induction. ■

Solution: See part (d). ■

Rubric: 2 points. “See part (d)” is with 2/3 of the score for part (d), unless the submitted
solution to part (d) relies on part (c).
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(d) What is the exact expected length of the random walk if we start at vertex k, as a
function of n and k? Prove your result is correct. (For partial credit, give a tight
Θ-bound for the case k = (n+ 1)/2, assuming n is odd.)

Solution: For all integers n and k such that 0 ≤ k ≤ n+ 1, let S(n, k) denote
the expected number of steps for the random walk to reach either vertex 0
or vertex n + 1, assuming we start at vertex k. For all n, we immediately
have S(n, 0) = S(n, n + 1) = 0. (Alternatively, if you prefer, part (c) implies
S(n, 1) = S(n, n) = n.) If 1≤ k ≤ n, linearity of expectation implies

S(n, k) = 1+
1
2

S(n, k− 1) +
1
2

S(n, k+ 1),

or equivalently,

S(n, k+ 1)− S(n, k) = S(n, k)− S(n, k− 1)− 2.

It follows by induction that

S(n, k+ 1)− S(n, k) = S(n, 1)− S(n, 0)− 2k = n− 2k,

and therefore, again by induction, that

S(n, k) =
k−1
∑

j=0

(n− 2 j) = kn− 2
k−1
∑

j=0

j = kn− k(k− 1).

We conclude that S(n, k) = k(n − k + 1). ■

Solution: For all integers n and k such that 0 ≤ k ≤ n+ 1, let S(n, k) denote
the expected number of steps for the random walk to reach either vertex 0 or
vertex n+ 1, assuming we start at vertex k.

Let’s break the random walk starting at k into two phases. The first phase
ends when the walk reaches either vertex 1 or vertex n for the first time; the
second phase is the rest of the walk.

The expected number of steps to reach either 1 or n from k is equal to
the expected number of steps to reach either 0 or n − 1 from k − 1. Thus,
the expected length of the first phase is exactly S(n− 2, k − 1). The expected
length of the second phase is either S(n, 1) or S(n, n), and part (c) implies
S(n, 1) = S(n, n) = n. So we have a simple recurrence:

S(n, k) = S(n− 2, k− 1) + n

To solve the recurrence, there are two cases to consider. If k ≤ n/2, then
inductively expanding the recurrence k times gives us

S(n, k) = S(n− 2k, 0) +
k−1
∑

j=0

(n− 2 j)
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= nk− 2
k−1
∑

j=0

k = nk− k(k− 1) = k(n− k+ 1)

On the other hand, if k > n/2, symmetry implies S(n, k) = S(n, n− k + 1) =
(n− k+ 1)k. In both cases, we conclude that S(n, k) = k(n − k + 1). ■

Rubric: 3 points = 1 for exact solution + 2 for proof. A proof that refers to part (c) is worth
full credit only if a standalone proof is given for part (c). A Θ(n2) bound for the special case
k = (n+ 1)/2 is worth 2 points.
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2. Let A[0 .. 2w − 1] and B[0 .. 2w − 1] be arrays of independent random ℓ-bit strings, and
define the hash function hA,B : U→ [m] by setting

hA,B(x , y) := A[x]⊕ B[y]

where ⊕ denotes bit-wise exclusive-or. Let H denote the set of all possible functions hA,B.
Filling the arrays A and B with independent random bits is equivalent to choosing a hash
function hA,B ∈H uniformly at random.

(a) Prove that H is 2-uniform.

Solution: Let (x , y) and (x ′, y ′) be arbitrary distinct elements of U, and let i
and j be arbitrary (possibly equal) hash values. To simplify notation, we define

a = A[x], b = B[y], a′ = A[x ′], and b′ = B[y ′].

Say that a, b, a′, b′ are good if a⊕ b = i and a′ ⊕ b′ = j. We need to prove that

Pr
�

a, b, a′, b′ are good
�

=
1

m2
.

There are three cases to consider.
• Suppose x ̸= x ′ and y ̸= y ′. Then a, b, a′, b′ are four distinct and there-

fore independent random w-bit strings. There are m4 possible values for
a, b, a′, b′. If we fix a and a′ arbitrarily, there is exactly one good value of b
and exactly one good value of b′, namely, b = a⊕ i and b′ = a′ ⊕ j. Thus,
there are m2 good values for a, b, a′, b′. We conclude that the probability
that a, b, a′, b′ are good is m2/m4 = 1/m2.

• Suppose x = x ′ and y ̸= y ′. Then a = a′, so there are only m3 possible
values for a, b, a′, b′. If we fix a = a′ arbitrarily, there is exactly one good
value of b and exactly one good value of b′, namely, b = a⊕ i and b′ = a′⊕ j.
Thus, there are m good values of a, b, a′, b′. We conclude that the probability
that a, b, a′, b′ are good is m/m3 = 1/m2.

• The final case x ̸= x ′ and y = y ′ is symmetric with the previous case.
■

Solution: See part (b). ■

Rubric: 3 points = 1 for basic setup + 1 for each interesting case. This is more detail than
necessary for full credit. This is not the only correct solution. “See part (b)” is worth 3/4 of your
score for part (b).
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(b) Prove that H is 3-uniform. [Hint: Solve part (a) first.]

Solution: Let (x , y), (x ′, y ′), (x ′′, y ′′) be arbitrary distinct elements of U, and
let i, j, k be arbitrary (possibly equal) hash values. To simplify notation, we
define

a = A[x], b = B[y], a′ = A[x ′], b′ = B[y ′], a′′ = A[x ′′], b′′ = B[y ′′].

Say that a, b, a′, b′, a′′, b′′ are good if a⊕ b = i and a′ ⊕ b′ = j and a′′ ⊕ b′′ = k.
Up to symmetry, there are three cases to consider.
• Suppose x , x ′, x ′′ are distinct. Arbitrarily fix y, y ′, y ′′. There are m3 possible

values for x , x ′, x ′′, but only one of those values is good, namely x = y ⊕ i
and x ′ = y ′ ⊕ j and x ′′ = y ′′ ⊕ k. (The case where y, y ′, y ′′ are distinct is
symmetric.)

• If x = x ′ = x ′′, then y, y ′, y ′′ must be distinct, so we can reduce to the
previous case. (The case where y = y ′ = y ′′ is symmetric.)

• The only remaining case (up to permuting the variable names) is x = x ′ ̸= x ′′

and y ̸= y ′ = y ′′. In this case, there are m4 possible values for a, b, b′, a′′.
If we fix a arbitrarily, the only good values of the remaining variables are
b = a⊕ i and b′ = a⊕ j and a′′ = b′⊕ k = a⊕ j⊕ k. Thus, there are exactly
m good values for a, b, b′, a′′.

In all cases, we conclude that Pr[a, b, a′, b′, a′′, b′′ are good] = 1/m3. ■

Rubric: 4 points = 1 for basic setup + 1 for each case. This is not the only correct solution.

(c) Prove that H is not 4-uniform.

Solution: For any function h ∈H and any w-bit strings x , y, x ′, y ′, we have

h(x , y) ⊕ h(x ′, y) ⊕ h(x , y ′) ⊕ h(x ′, y ′)

= A[x]⊕ B[y] ⊕ A[x ′]⊕ B[y] ⊕ A[x]⊕ B[y ′] ⊕ A[x ′]⊕ B[y ′]

= A[x]⊕ A[x] ⊕ A[x ′]⊕ A[x ′] ⊕ B[y]⊕ B[y] ⊕ B[y ′]⊕ B[y ′]

= 0.

It follows that for any hash values i, j, k, l, the probability

Pr
�

h(x , y) = i ∧ h(x , y ′) = j ∧ h(x ′, y) = k ∧ h(x ′, y ′) = l
�

is equal to 1/m3 if i ⊕ j ⊕ k⊕ l = 0 and equal to zero otherwise; thus, it cannot
equal 1/m4. ■

Rubric: 3 points. This is more detail than necessary for full credit. This is not the only correct
solution.
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3. Suppose we want have m tasks, and we want to assign each task to one of n servers.
Assume(unrealistically) that we have access to an ideal random hash function that maps
any value x to a real value h(x) ∈ [0,1]. Identifying each server and each task with a
different point in the domain of the hash function, we use the hash function to map both
tasks and servers randomly to the unit interval [0,1]. Now, each task is assigned to the
first server to its right on the number line (with the interval wrapping around). When a
new server is added to the system, we hash it to [0, 1] and move tasks to it accordingly.

(a) Suppose a new (n+1)-th server is added to the system. What is the expected number
of tasks that need to be reassigned? Note that the expectation is taken with respect
to the random positions of all the servers and all the tasks.

Solution: The only tasks that need to be reassigned are those assigned to the
new server. Since the process is as if we map all the machines to the interval
from the beginning, by symmetry, in expectation m

n+1 items are assigned to the
(n+ 1)-th server, and hence the expected number of tasks that are relocated is

m
n+1 . ■

(b) Show that, with high probability, no server “owns” more than an O(log n/n) fraction
of the interval [0,1].

Solution: Split the unit circle into n/(2 ln n) disjoint canonical intervals, each
with length (2 ln n)/n. (Here ln n is standard shorthand for loge n.)

For any canonical interval I , the probability that no server lands in I is
�

1−
2 ln n

n

�n

≤
�

e−
2 ln n

n

�n
=

1
n2

by The World’s Most Useful Inequality 1+ x ≤ ex . The union bound implies
that the probability that at least one canonical interval contains no servers is at
most n

2 ln n ·
1
n2 >

1
n . Thus, with probability at least 1− 1

n , every canonical interval
contains at least one server, and therefore every server owns at most 4 ln n/n of
the unit circle. ■

(c) Show that if we have n servers and m items where m≥ 1000n, the maximum load
on any server is O(m

n · log n) with high probability.

Solution: Part (b) implies that with high probability, each server owns at most
4 ln n/n of the unit circle. Let us assume that this event happens and bound
the probability, over the random positions of the tasks, that the maximum load
exceeds 16m ln n/n. Since the tasks are also distributed uniformly, the expected
number of tasks in any interval of size 4 ln n/n is at most 4m log n/n. Because
m≥ 1000n, Chernoff bounds imply that with probability at least 1− n−100, the
number of tasks in any interval of length 4 ln n/n is at most 16m ln n/n.

The union bound now implies that with probability at least 1− 1/n− n−100,
the maximum load is at most 16m ln n/n. ■
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Rubric: 10 points = 2 for part (a) + 4 for part (b) + 4 for part (c)
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