
CS 473 Homework 5 Solutions Fall 2024

1. Recall that a priority search tree is a binary tree in which every node has both a search key
and a priority, arranged so that the tree is simultaneously a binary search tree for the keys
and a min-heap for the priorities. A heater is a priority search tree in which the priorities
are given by the user, and the search keys are distributed uniformly and independently at
random in the real interval [0, 1]. Intuitively, a heater is a sort of anti-treap.

The following problems consider an n-node heater T whose priorities are the integers
from 1 to n. We identify nodes in T by their priorities; thus, “node 5” means the node in T
with priority 5. For example, the min-heap property implies that node 1 is the root of T .
Finally, let i and j be integers with 1≤ i < j ≤ n.

(a) What is the exact expected depth of node j in an n-node heater? Answering the
following subproblems will help you:

i. Prove that in a random permutation of the (i + 1)-element set {1, 2, . . . , i, j},
elements i and j are adjacent with probability 2/(i + 1).

ii. Prove that node i is an ancestor of node j with probability 2/(i + 1). [Hint: Use
the previous question!]

iii. What is the probability that node i is a descendant of node j? [Hint: Do not use
the previous question!]

Solution: We follow the proposed outline:

i. Fix a permutation of the subset {1,2, . . . , i}. There are exactly i + 1 places
to insert j into this permutation, exactly two of which are adjacent to i.
Each possibility is equally likely. It follows that in a random permutation, i
and j are adjacent with probability 2/(i + 1).

ii. Recall from class that a node x is an ancestor of node y in a priority search
tree if and only if, among all nodes with search keys between key(x) and
key(y), node x has the smallest priority. Thus, node i is an ancestor of
node j if and only if, when we sort the nodes by their search keys, nothing in
the set {1,2, . . . , i − 1} appears between node i and node j. Equivalently, in
the permutation of nodes {1,2, . . . , i, j} induced by the search keys, nodes i
and j are adjacent. It follows that i is an ancestor of j with probability
2/(i + 1)

iii. Node i cannot be a descendant of node j, because a heater is a min-heap.
The probability is zero.

The depth of a node is equal to the number of proper ancestors. Thus, the
expected depth of node j can be computed using the usual sum-of-indicators
analysis, as follows:

E[#proper ancestors of j] =
n
∑

i=1

Pr[i is a proper ancestor of j]

=
j−1
∑

i=1

2
i + 1

= 2H j − 2 = Θ(log j)

■

1

CS 473 Homework 5 Solutions Fall 2024

Rubric: 6 points = 2 for part i. + 2 for part ii. + 1 for part iii. + 1 for conclusion (½ forΘ(log j); no
points forΘ(log n)). These are not the only correct proofs for i. and ii.

(b) Describe and analyze an algorithm to insert a new item into an n-node heater.

Solution: The algorithm is identical to the algorithm for inserting into a treap.
First, insert a new vertex with a random search key, using the textbook algorithm
for inserting into a binary tree. Then assign this new node the desired priority
and rotate it upward to fix the heap property.

The running time of the algorithm is proportional to the depth of the new
node before its priority is assigned. If we set the new priority to∞, this depth
is unchanged, but the second phase of the algorithm would do nothing. The
new node would have the largest priority in the heater, and so by part (a), its
expected depth is 2Hn+1−2= O(log n). We conclude that the expected running
time of our insertion algorithm is O(log n). ■

Rubric: 2 points = 1 for algorithm + 1 for analysis. No analysis credit for just writing O(log n),
or pointing to the lecture notes (which analyze treaps, not heaters).

(c) Describe and analyze an algorithm to delete the smallest priority (the root) from an
n-node heater.

Solution: We essentially run the insertion algorithm backwards, just as we do
for treaps: First rotate the node to be deleted downward until it becomes a leaf
(implicitly increasing its priority to∞), and then discard that leaf.

The running time is proportional to the depth of the former root just before
we discard it. The analysis in part (a) implies that the expected depth of this
leaf is O(log n). ■

Rubric: 2 points = 1 point for algorithm + 1 point for analysis.

2

CS 473 Homework 5 Solutions Fall 2024

2. Suppose we generate a bit-string w by flipping a fair coin n times. Thus, each bit in w is
equal to 0 or 1 with equal probability, and the bits in w are fully independent. A run of
length ℓ in w is a substring of length ℓ in which all bits are equal. For example, the string
01000011101 contains three runs of length 3, starting at the third, fourth, and seventh bits.

(a) Suppose n is a power of 2. Show that the expected number of runs of length lg n+ 1
is 1− o(1). (Here “lg” is standard shorthand for log-base-2.)

Solution: Let X i be an indicator random variable which takes value 1 if there is
a run of lg n+ 1 starting from index i ∈ {1, . . . , n} and takes value 0 otherwise.
Note that for any index 1≤ i ≤ n− lg n, we have that

E[X i] =
�

1
2

�log n

=
1
n

,

because if a run starts from the ith index, the next lg n bits must be the same as
the ith one. On the other hand, E[X i] = 0 for n− lg n< i ≤ n since there can be
no runs of length lg n+ 1 starting at these indices. Hence, the expected number
of runs of length lg n+ 1 is

(n− lg n) ·
1
n
= 1−

lg n
n
= 1− o(1).

■

Rubric: 4 points = 2 points for the correctly computing the probability of a single run + 2 points
for computing the correct expected number of runs.

(b) Show that, for sufficiently large n, the probability that every run in w has length less
than ⌊lg n−2 lg lg n⌋ is less than 1/n. [Hint: Break w into disjoint substrings of length
⌊lg n− 2 lg lg n⌋ and use the following fact: The event that all bits in one substring
are equal is independent of the event that all bits in any other substring are equal.]

Solution: Let k = ⌊lg n− 2 lg log n⌋. The event that every run has length less
than k is the same as the event that there is no run of length k. Let us call
this event A. Instead of bounding the probability of this event directly, we will
consider another event B which contains A. For this, we break the string into
disjoint consecutive substrings of length k. There are ⌊n/k⌋ such substrings. For
a string of length n to not contain a run of length k (i.e. the event A occurs), it
is necessary that none of the substrings contains a run of length k. Denoting the
latter event by B, we note that A ⊆B, and thus P[A]≤ P[B].

The probability that a single substring does not contain a run is 1− (1/2)k−1.
Since the substrings are disjoint and independent, the probability that none of
them contains a run is

P[B] =
�

1−
�

1
2

�k−1
�⌊n/k⌋

3

CS 473 Homework 5 Solutions Fall 2024

Now, k ≤ lg n− 2 lg n lg n− 1 and for sufficiently large n, we have that
⌊n/k⌋ ≤ n

lg n − 1. Thus,

P[B]≤
�

1−
�

1
2

�lg n−2 lg lg n�n/ lg n−1

=

�

1−
lg2 n

n

�n/ lg n−1

.

Using the inequality 1+ x ≤ ex which holds for all x ∈ R, we can bound the
above by the following

P[B]≤
�

exp

�

−
lg2 n

n

��n/ lg n

·
�

1−
lg2 n

n

�−1

= exp

�

−
lg2 n

n

�

n
lg n

�

�

·
�

1−
lg2 n

n

�−1

= exp (− lg n) ·
�

1−
lg2 n

n

�−1

=
1

n1/ ln 2
·
�

1−
lg2 n

n

�−1

Finally, note that (1− x)−1 ≤ 1+ 2x for any 0≤ x ≤ 1/2. Thus, for n large
enough so that lg2 n/n≤ 1/2 holds, we have

P[B]≤
1

n1/ ln2
·
�

1+
2 lg2 n

n

�

Since 1/ ln2 > 1.4, it follows that the above probability is at most 1/n for
large enough n. ■

Rubric: 6 points = 2 points for correctly defining the event in terms of disjoint substrings, 2
point for correctly computing the probability of the event and 2 points for showing that it is less
than 1/n for large enough n. This is not the only way of analyzing these probabilities.

4

CS 473 Homework 5 Solutions Fall 2024

3. Suppose we are given a coin that may or may not be biased, and we would like to compute
an accurate estimate of the probability of heads. Specifically, if the actual unknown
probability of heads is p, we would like to compute an estimate p̃ such that

Pr [|p̃− p|> ϵ]< δ

where ϵ is a given accuracy or error parameter, and δ is a given confidence parameter.

The following algorithm is a natural first attempt; here Flip() returns the result of an
independent flip of the unknown coin.

MeanEstimate(ϵ):
count← 0
for i← 1 to N

if Flip() = Heads
count← count+ 1

return count/N

(a) Let p̃ denote the estimate returned by MeanEst imate(ϵ). Prove that E[p̃] = p.

Solution: Let X i = 1 if the ith flip is Heads and X i = 0 if the ith flip is Tails.
The final value of count is X =

∑

i X i , so linearity of expectation implies

E[X] =
N
∑

i=1

Pr[X i = 1] = N p.

Finally, p̃ = X/N , so linearity of expectation implies E[p̃] = E[X]/N = p, as
required. ■

Rubric: 3 points.

(b) Prove that if we set N = ⌈α/ϵ2⌉ for some appropriate constantα, then Pr[|p̃− p|> ϵ]<
1/4. [Hint: Use Chebyshev’s inequality.]

Solution: The coin flips are pairwise independent (in fact, fully independent)
so we can apply Chebyshev’s inequality. Let X be the final value of count, and
recall from part (a) that µ= E[X] = N p.

Pr[|p̃− p|> ϵ] = Pr[|X −µ|> Nϵ]

= Pr[(X −µ)2 > N2ϵ2]

<
µ

N2ϵ2
=

p
Nϵ2

[Chebyshev]

Setting N = ⌈4/ϵ2⌉ implies Pr[|p̃− p|> ϵ]< p/4≤ 1/4. ■

Rubric: 3 points. We can’t apply the form of Chebyshev’s inequality given in the notes to p̃
directly, because p̃ is not a sub of indicators.

5

CS 473 Homework 5 Solutions Fall 2024

(c) We can increase the previous estimator’s confidence by running it multiple times,
independently, and returning the median of the resulting estimates.

MedianOfMeansEstimate(δ,ϵ):
for j← 1 to K

estimate[j]←MeanEstimate(ϵ)
return Median(estimate[1 .. K])

Let p∗ denote the estimate returned by MedianOfMeansEstimate(δ,ϵ). Prove
that if we set N = ⌈α/ϵ2⌉ (inside MeanEstimate) and K = ⌈β ln(1/δ)⌉, for some
appropriate constants α and β , then Pr[|p∗ − p| > ϵ] < δ. [Hint: Use Chernoff
bounds.]

Solution: For each index j, define an indicator variable

Yj := [|estimate[j]− p|> ϵ].

Let Y =
∑

j Yj denote the number of bad mean estimates. Our analysis in part (b)
implies that if we set N = ⌈4/ϵ2⌉ inside MeanEstimate), then Pr[Yj = 1]< 1/4
for all j and therefore E[Y]< K/4.

The median estimate p∗ is larger than p+ ϵ if and only if at least half of the
mean estimates are larger than p+ ϵ. Similarly, p∗ < p− ϵ if and only if at least
half of the mean estimates are larger than p+ ϵ. Thus,

Pr[|p∗ − p|> ϵ] ≤ Pr[Y ≥ K/2]

The indicator variables Yj are mutually independent (because the coin flips
inside MeanEstimate are mutually independent). However, we cannot apply
Chernoff bounds directly to Y , because we would eventually need a lower bound
on E[Y].

Let Z1, Z2, . . . , Zd bemutually independent indicator variables where Pr[Zi = 1] =
1/4 for all i, and let Z =

∑d
i=1 Zi . We immediately have

Pr[Y ≥ K/2] ≤ Pr[Z ≥ K/2];

intuitively, in any sequence of K independent coin flips, if we increase the
probability that each coin comes up heads, we also increase the probability of
getting at least K/2 heads.

Finally, we apply the Chernoff bound Pr[X ≥ (1+∆)µ]< exp(−∆2µ/3) with
µ= E[Z] = K/4 and ∆= 1:a

Pr[Z ≥ K/2] = Pr[Z ≥ 2µ] ≤ exp(−µ/3) = exp(−K/12).

We conclude that if we set K = ⌈12 ln(1/δ)⌉, then Pr[|p∗ − p| > ϵ] < δ, as
required. ■

aSorry, δ was already taken.

6

CS 473 Homework 5 Solutions Fall 2024

Rubric: 4 points.−1 for implicitly assuming that E[Y] = K/4. A perfect solution must explicitly
invoke the fact that the mean estimates are mutually independent. This is more detail than
necessary for full credit.

7

