
CS 473 Homework 3 Solutions Fall 2023

1. Suppose we are given a tree T with weighted edges. Describe and analyze an algorithm to
find a matching in T with maximum total weight.

Solution (7/10): For any vertex v of the input tree T , we define two functions:

• MWM(v) is the weight of a maximum weight matching in the subtree rooted
at v, where v may or may not be incident to a matching edge.

• MWM∗(v) is the weight of a maximum weight matching in the subtree rooted
at v, where v is not incident to a matching edge.

We need to computeMWM(root(T )). These two functions satisfy the following mutual
recurrences, where wt(e) denotes the weight of edge e and w ↓ v denotes that w is a
child of v.

MWM∗(v) =







0 if v is a leaf
∑

w↓v
MWM(w) otherwise

MWM(v) =



























0 if v is a leaf

max















MWM∗(v)

max
w↓v





wt(vw) +MWM∗(w)

+
∑

x↓v,x ̸=w

MWM(x)



















otherwise

We can memoize these functions into two new fields at each node of T , and we can
evaluate the functions in postorder. For each vertex v, evaluating MWM∗(v) and
MWM(v) requires O(deg(v)2) time, so the overall algorithm runs in O(n2) time in
the worst case. ■

Solution (10/10): We can speed up the previous solution by modifying the recurrence
for MWM. The basic observation is that the sum over x in the previous recurrence is
equal the sum in the recurrence for MWM∗, minus one term.

MWM(v) =



















0 if v is a leaf

max







MWM∗(v)

+max
w↓v

�

wt(vw) +MWM∗(w)
+MWM∗(v)−MWM(w)

�







otherwise

We can still memoize these functions into two new fields at each node of T , and we
can evaluate the functions in postorder.

For each vertex v, evaluating MWM∗(v) and MWM(v) with this new recurrence
requires O(deg(v)) time, so the overall algorithm runs in O(n) time. ■

Rubric: 10 points: standard dynamic programming rubric. Max 7 points for O(n2)-time algorithms;
scale partial credit. These are not the only correct solutions.

1



CS 473 Homework 3 Solutions Fall 2023

2. Suppose we are given a convex polygon P with an even number of vertices p0, p1, . . . , p2n−1,
indexed in order around the boundary. Describe an algorithm to compute diagonals that
partition P into convex quadrilaterals (4-sided polygons), where the area of the smallest
quadrilateral is as large as possible.

Assume you have access to a subroutine QuadArea(i, j, k, l) that computes the area of
the quadrilateral with vertices pi , p j , pk, pl in O(1) time.

Solution (find the best quad incident to an edge): For any indices i and j such
that 0 ≤ i < j ≤ 2n − 1, let P[i .. j] denote the convex polygon with vertices
pi , pi+1, . . . , p j. Let MaxMinQ(i, j) denote the maximum, over all quadrangula-
tions of P[i .. j], of the area of the smallest quadrilateral. We need to compute
MaxMinQ(0,2n− 1).

In every quadrangulation of P[i .. j], the line segment pi p j must be an edge of
some quadrilateral. The following recurrence considers all possible value for the other
two vertices of this quadrilateral:

MaxMinQ(i, j)

=







































−∞ if j − i is even
∞ if j = i + 1

max



















min



















QuadArea(i, i′, j′, j)

MaxMinQ(i, i′)

MaxMinQ(i′, j′)

MaxMinQ( j′, j)



















�

�

�

�

�

�

�

�

�

�

i < i′ < j′ < j



















otherwise

The first base case ensures that we only consider subproblems where j − i is even;
the second base case correctly handles the empty quadrangulation and simplifies the
conditions of the main recursive case.

We can memoize this function into a two-dimensional array MaxMinQ[0 .. 2n− 1,
0 .. 2n− 1], which we can fill with two nested loops, decreasing i in one loop and
increasing j in the other. (It doesn’t matter which of these is the outer loop.) Each
entry MaxMinQ[i, j] can be computed in O(n2) time (by looping over i′ and j′), so
the overall algorithm runs in O(n4) time. ■

Solution (find the best quad(s) incident to a vertex): For this solution, the sub-
problems consider polygons defined by an interval of vertices of P, plus one addi-
tional vertex. Specifically, for any indices i, j, and l such that 0 ≤ i < j < l ≤
2n− 1, let P[i; j .. k] denote the convex polygon with vertices pi , p j , p j+1, . . . , pl . Let
MaxMinQ(i; j, l) denote the maximum, over all quadrangulations of P[i; j .. l], of the
area of the smallest quadrilateral. We need to compute MaxMinQ(0,1, 2n− 1).

In any partition of P[i; j .. l] into quadrilaterals, there are two possibilities for the
local structure at pi:

• Exactly one quadrilateral touches pi. This quadrilateral has vertices pi, p j, pk,

2



CS 473 Homework 3 Solutions Fall 2023

and pk, for some index j < k < l.

• At least two quadrilaterals touch pi . In this case, the partition uses the diagonal
between pi and pk, for some index j < k < l.

k

i j

l
• • •

• • •

i j

l
k

• • •

• • •

This case analysis implies that the functionMaxMinQ satisfies the following recurrence:

MaxMinQ(i; j, l)

=







































−∞ if l − j is odd

max























min

�

MaxMinQ(i; j, k)
MaxMinQ(i; k, l)

�

min







QuadArea(i, j, k, l)
MaxMinQ( j; j + 1, k)
MaxMinQ(k; k+ 1, l)







�

�

�

�

�

�

�

�

�

�

�

j < k < l























otherwise

We can memoize this function into a three-dimensional array MaxMinQ[0 .. 2n− 1,
0 .. 2n− 1,0 .. 2n− 1], which we can fill with three nested loops, decreasing the first
two indices i and j and increasing the third index l. (It doesn’t matter how these
loops are nested.) Each entry MaxMinQ[i, j, l] can be computed in O(n) time (by
looping over all possible values of k), so the overall algorithm runs in O(n4) time. ■

Rubric: 10 points, standard dynamic programming rubric. These are not the only correct solutions.

This is not the fastest algorithm known for this problem. Specifically, the first solution can be
modified to run in O(n3) time by exploiting the following geometric lemma: The smallest quadrilateral
in any partition uses at least two edges of P . This lemma (which requires a proof!) essentially lets us
search for indices i′ and j′ in independent subproblems. Feel free to ask Jeff for details in office hours.

3



CS 473 Homework 3 Solutions Fall 2023

3. Describe and analyze an algorithm to determine who wins the game between the Doctor
and River, assuming both players play perfectly.

Solution: We start by topologically sorting the input dag G, because that’s always the
first thing one does with a dag. Topological sort labels the vertices with integers from
1 to V , so that every edge points from a lower label to a higher label. Because s is the
only source, its label is 1, and because t is the only sink, its label is V .

We represent the two players with booleans: True means the Doctor, and False
means River. For any vertices d and r and any boolean who, let WhoWins(d, r,who)
denote the winning player when the Doctor’s token starts on d, River’s token tarts
on r, player who moves first, and both players play perfectly. We need to compute
WhoWins(s, t,True).

If the game is not over, then the Doctor wins moving first if and only if at least one
move by the Doctor leads to a position where the Doctor wins moving second, and the
Doctor wins moving second if and only if every move by River leads to a position where
the Doctor wins moving first. (This is the recursive definition of “play perfectly”, for
any finite two-player game that cannot end in a draw.) Thus, the function WhoWins
can be computed by the following recursive algorithm:

WhoWins(d, r,who):
if d = r

return True
else if d = t or r = s

return False
else if who= True

return
∨

d�d ′
WhoWins(d ′, r,False)

else if who= False
return
∧

r ′�r
WhoWins(d, r ′,True)

Thanks to our initial topological sort, we can memoize this function into a V ×V ×2
array, indexed by the variables d, r, and who in that order. We can fill the array
with two nested for loops, decreasing d in one loop and increasing r in the other,
considering both players inside the inner loop. The nesting order of the two for-loops
doesn’t matter. Explicit pseudocode appears on the next page.

Time analysis: For any node v in G, let indeg(v) denote the number of edges
entering v (the in-degree of v), and let and outdeg(v) denote the number of edges
leaving v (the out-degree of v). For almost every pair of vertices d and r, our algorithm
considers all outdeg(d) possible moves for the Doctor and then all indeg(r) possible
moves for River. Thus, the total running time of our algorithm is at most

V
∑

d=1

V
∑

r=1

O (outdeg(d) + indeg(r)) .

4



CS 473 Homework 3 Solutions Fall 2023

Ignoring the big-Oh constant, we can evaluate this sum in two pieces:

∑

d,r

outdeg(d) =
∑

r

�

∑

d

outdeg(d)

�

=
∑

r

E = V E

∑

d,r

indeg(r) =
∑

d

�

∑

r

indeg(r)

�

=
∑

d

E = V E

Less formally, our algorithm considers all V E pairs (Doctor’s position, River’s move)
and all V E pairs (Doctor’s move, River’s position), spending O(1) time on each pair.
We conclude that our algorithm runs in O(VE) time.

WhoWins(V, E):
label vertices of G in topological order
for d ← V down to 1

for r ← 1 to V
if d = r

WhoWins[d, r,True]← True
WhoWins[d, r,False]← True

else if d = t or r = s
WhoWins[d, r,True]← False
WhoWins[d, r,False]← False

else
doctor← False
for all edges d�v

doctor← doctor∨WhoWins[v, r,False]
WhoWins[d, r,True]← doctor
river← False
for all edges v�r

river← river∧WhoWins[d, v,True]
WhoWins[d, r,False]← river

return WhoWins[s, t,True]

■

Rubric: 10 points, standard dynamic programming rubric. This solution is more detailed than neces-
sary for full credit. −1 for looser time bounds like O(V 3) or O(V 2D)where D is maximum degree.

This is not the only correct description of this algorithm. For example, we can simplify the recurrence
slightly by asking whether the first player wins, and then Nanding the results of recursive calls, instead
of alternating between Ands and Ors. More significantly, instead of topologically sorting the dag at
the beginning, we can discover the correct traversal orders on the fly via depth-first search. Thus, we
can rewrite the first three lines of WhoWins as follows:

WhoWins(V, E):
for all vertices d in postorder 〈〈via DFS(G, s) 〉〉

for all vertices r in reverse postorder 〈〈via DFS(rev(G), t) 〉〉
〈〈and so on〉〉

5



CS 473 Homework 3 Solutions Fall 2023

No penalty for implicitly assuming that the input graph has more than 10100 vertices; we can solve
the small cases by brute force in O(1) time. In particular, no penalty for implicitly assuming that the
input graph has more than two vertices. (If the graph has only one or two vertices, then both players
win!) Finally, no penalty for assuming without proof that V = O(E); because the graph G has only
one source, it must be connected, and therefore E ≥ V − 1.

Solution (configuration graph search): First we construct the configuration graph
H = (V ′, E′), which contains a vertex for every possible game configuration and a
directed edge for every legal move. Specifically:

• V ′ = V × V × {0,1}. Each vertex (d, r,who) represents the configuration where
the Doctor’s token is at node d, River’s token is at node r, and it is the Doctor’s
turn if and only if who= 1. The number of vertices in H is 2V 2.

• E′ =
�

(d, r, 1)�(d ′, r, 0)
�

� d�d ′ ∈ E
	

∪
�

(d, r, 0)�(d, r ′, 1)
�

� r ′�r ∈ E
	

. Each
edge represents a legal move by the appropriate player. The number of edges
in H is
∑

r

∑

d outdeg(d) +
∑

d

∑

r indeg(r) = 2V E.

If H contains a directed cycle, it must have the form

(d0, r0, 1)�(d1, r0, 0)�(d1, r1, 1)� · · ·�(dk, rk, 1)�(d0, rk, 0)�(d0, r0, 1).

But then the original input dag would contain the cycles d0�d1� · · ·�dk�d0 and
r0�rk� · · ·�r1�r0, which is impossible. We conclude that H is also a dag.

For each vertex (d, r,who) let WhoWins(d, r,who) = True if the Doctor wins
from the configuration (d, r,who) if both players play perfectly; otherwise, let
WhoWins(d, r,who) = False. We need to compute WhoWins(s, t, 1). We can evaluate
this function recursively as follows:

WhoWins(d, r,who):
if d = r

return True
else if d = t or r = s

return False
else if who= 1

return
∨

(d,r,1)�(d ′,r,0)
WhoWins(d ′, r, 0)

else if who= 0

return
∧

(d,r,0)�(d,r ′,1)
WhoWins(d, r ′, 1)

We can memoize this function into the vertices of H themselves, and we can evaluate
this function at every vertex of H by considering the vertices in reverse topological
order (or equivalently, in DFS postorder). The resulting algorithm runs in O(V ′+E′) =
O(VE) time. ■

Rubric: 10 points = 5 for correctly defining H (= 2 for vertices + 2 for edges + 1 for proving H is a dag) +
5 for solving the problem on H (dynamic programming rubric)

6


