
CS 473 Homework 1 Solutions Fall 2024

1. Design an algorithm that returns the number of edges between two given subsets of vertices,
using only calls to AnyFriendsBetween.

Solution (divide and conquer): For any subsets S and T of vertices of G, let m(S, T )
denote the number of edges between S and T . Suppose we partition S into two
disjoint subsets S1 and S2 and similarly partition T into two disjoint subsets T1 and T2.
We immediately have

m(S, T ) = m(S1, T1) +m(S1, T2) +m(S2, T1) +m(S2, T2). (1)

This simple observation leads to the following natural recursive edge-counting algo-
rithm.

In the general case, we partition S into two subsets S1 and S2 whose sizes differ by
at most 1; without loss of generality, |S1| = ⌊|S|/2⌋ and |S2| = ⌈|S|/2⌉. We similarly
partition T into two subsets T1 and T2 whose sizes differ by at most 1. Then for
each i, j ∈ {1, 2}, we call AnyFriendsBetween(Si , T j); if this call returns True, we
recursively count the edges between Si and T j. Finally, we return the sum of the
results of all recursive calls.

There are two base cases to consider. If either S or T are empty, there are
obviously zero edges between them. If S and T each contain a single vertex, our
recursive divide-and-conquer strategy could fall into an infinite loop; instead we call
AnyFriendsBetween(S, T ) to determine if those two vertices are connected. In all
other cases, each recursive call is passed fewer vertices than its parent call.

CountFriendsBetween(S, T ):
if S =∅ or T =∅

return 0
if |S|= 1 and |T |= 1

return AnyFriendsBetween(S, T )
arbitrarily partition S into two halves S1 and S2

arbitrarily partition T into two halves T1 and T2

for i← 1 to 2
for j← 1 to 2

if AnyFriendsBetween(Si , T j)
m(Si , T j) = CountFriendsBetween(Si , T j)

else
m(Si , T j) = 0

return m(S1, T1) +m(S2, T1) +m(S1, T2) +m(S2, T2)

Correctness follows by induction from Equation (1).
Time analysis: Let n denote the the total number of input vertices (n= |S|+ |T |),

and let m = m(S, T ). We analyze the “running time” of our algorithm in terms of
these two parameters.

Each node in the recursion tree for CountFriendsBetween(S, T ) corresponds to
a recursive call CountFriendsBetween(S′, T ′) for some subsets S′ ⊆ S and T ′ ⊆ T .
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Each recursive call invokes the subroutine AnyFriendsBetween at most four times.
So up to constant factors, the running time of our algorithm is at most the number of
nodes in the recursion tree.

Ignoring rounding, the total number of vertices passed to each recursive call is at
most half the number passed to its parent. it follows that the recursion tree has depth
O(log n).

We can classify the nodes of the recursion tree into three types:

(i) Edge leaves. These correspond to recursive calls CountFriendsBetween(S′, T ′)
where |S′|= |T ′|= 1 and AnyFriendsBetween(S′, T ′) = True. Because each
edge between S and T is counted exactly once, there are exactly m edge leaves.

(ii) Internal nodes. These correspond to recursive calls that make further recursive
calls. Every internal node is an ancestor of at least one edge leaf, and every edge
leaf has at most O(log n) ancestors. It follows that there are at most O(m log n)
internal nodes.

(iii) Empty leaves. These correspond to recursive calls that return 0. (In particular,
this includes recursive calls where either S′ or T ′ is empty.) Every empty leaf is
a child of an internal node, and every internal node has at most four children. It
follows that there are at most O(m log n) empty leaves.

We conclude that our algorithm calls AnyFriendsBetween at most O(m logn) times.
In particular, if m is significantly less than n2, our algorithm runs in subquadratic
“time”. ■

More refined analysis implies the tight worst-case upper bound O(m log(n2/m)).
If we allow the algorithm to use randomness (as we shall see later in the course),
then one can compute a (1+ ϵ)-approximation of the number of edges using only
O(polylog n) calls to the subroutine (where the big-O constant depends on ϵ). This
algorithm is exponentially faster but substantially more complex. See the following
paper if you are interested:

[1] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus
Rashtchian, Makrand Sinha. Edge estimation with independent set oracles. ACM
Transactions on Algorithms (TALG) 16(4):1-27, 2020.

Rubric: 10 points = 3 for the algorithm + 7 for the time analysis (not the other way around). This may
not be the only correct solution; this is not the only correct analysis of this algorithm. A brute-force
algorithm that runs in O(n2) time, with correct analysis, is worth at most 4 points. (For example:
consider every pair of vertices; and invoke the subroutine on those singleton sets.).

A correct divide and conquer algorithm that provides some justification of why it must be faster
than brute-force is worth 8 points. Note that the recurrence relation T (n, n) = 4T (n/2, n/2) +O(1)
for the divide and conquer algorithm only implies an O(n2) time bound.
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2. This question asks you to design and analyze efficient algorithms to compute the number
of distinct interval sums in a given array A[1 .. n].

(a) Describe an algorithm that runs in O(n2 log n) time.

Solution: First we compute a two-dimensional array S[1 .. n, 1 .. n], where S[i, j]
contains the sum of all entries in the interval A[i .. j], in O(n2) time:

for i← 1 to n
S[i, i]← A[i]
for j← i + 1 to n

S[i, j]← S[i, j − 1] + A[ j]

Then we count the number of distinct entries in S (on or above the main diagonal),
either by sorting and removing duplicates, inserting them into a balanced binary
search tree, or inserting them into a hash table. The first two algorithms run in
O(n2 logn) time; the hashing-based algorithm runs in O(n2) expected time. ■

Solution (prefix sums): First we compute an array P[0 .. n] of prefix sums,
where P[i] is the sum of the first i entries in the input array A.

P[0]← 0
for i← 1 to n

P[i]← P[i − 1] + A[i]

Then for any indices i ≤ j, the sum of numbers in the interval A[i .. j] is exactly
P[ j] − P[i − 1]. So it remains to count the number of distinct differences
P[ j]− P[i]. We can record all such differences (with duplicates) into a single
array by brute force in O(n2) time, and then remove duplicates by sorting and
scanning in O(n2 logn) time. ■

Rubric: 4 points = 3 for algorithm + 1 for analysis. −½for using hashing without the word
“expected” in the time bound.

3



CS 473 Homework 1 Solutions Fall 2024

(b) Describe an algorithm that runs in O(M log M) time, where M =
∑

i A[i].

Solution: Similarly to our second solution to part (a), we start by by computing
all prefix sums in A; however, instead of a simple array of prefix sums, we
compute an array P[0 .. M] of bits, where P[t] = 1 if and only if some prefix
of A sums to t.

PrefixBits(A[1 .. n]):
〈〈Compute sum of all entries〉〉
sum← 0
for i← 1 to n

sum← sum+ A[i]
〈〈Allocate and clear bit array〉〉
allocate P[0 .. sum]
for t ← 1 to sum− 1

P[t]← 0

〈〈Set bits for prefix sums〉〉
P[sum]← 1
for i← n down to n

sum← sum− A[i]
P[sum]← 1

return P

Next we compute a second array P[0 .. M] by reversing P, so that P[i] = P[M−i].
We compute the convolution Q[0 .. 2M] = P ∗ P in O(M log M) time using

fast Fourier transforms. This convolution array is a palindrome; for any integer k,
both entries Q[M + k] = Q[M − k] store the number of intervals in the input
array whose sum is equal to k.

Finally, we count and return the non-zero entries in Q[0 .. M − 1] (or equiva-
lently, in Q[M + 1 .. 2M].

Because the input array A contains only positive integers, we must have
M > n, so creating the initial bit array P takes O(n+M) = O(M) time. The rest
of the algorithm is dominated by the convolution step, which takes O(M log M)
time, as required. ■

Rubric: 6 points = 1 for using FFTs at all + 2 for setting up the correct convolution + 2 for other
algorithm details + 1 for time analysis (but only if the algorithm is mostly correct)
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3. Suppose we are given two bit strings P[1 .. m] (the “pattern”) and T[1 .. n] (the “text”),
where m≤ n. Describe and analyze an algorithm to find the minimum Hamming distance
between P and a substring of T of length m. For full credit, your algorithm should run in
O(n log n) time.

Solution (consider 0s and 1s separately): For any integer 0 ≤ s ≤ n−m (“shift”),
let HD(s) denote the Hamming distance between P[1 .. m] and T[s+ 1 .. s+m]; we
need to compute mins HD(s).

Let us write HD(s) = m− Both1(s)− Both0(s), where

• Both1(s) is the number of indices i such that P[i] = T[i + s] = 1.
• Both0(s) is the number of indices i such that P[i] = T[i + s] = 0.

More formally, we have

Both1(s) =
m
∑

i=1

P[i] · T[s+ i] Both0(s) =
m
∑

i=1

(1− P[i]) · (1− T[s+ i])

We can evaluate Both1(s) for every index s using convolution as follows. Define
two sequences p and t by setting pi = P[m− i] and t i = T[i] for each index i. Then
for all s we have

Both1(s) =
∑

i

pm−i · ts+i = (p ⋆ t)m+s

We can construct the sequences p and t in O(n) time, and then compute their
convolution in O(n log n) time using fast Fourier transforms.

We can similarly express Both0(s) as a convolution by defining p′i = 1− P[m− i]
and t ′i = 1− T[i] for each index i. Then for all s we have

Both0(s) =
∑

i

p′m−i · t
′
s+i = (p

′ ⋆ t ′)m+s

We can construct the sequences p′ and t ′ in O(n) time, and then compute their
convolution in O(n log n) time using fast Fourier transforms.

After computing both convolutions, we can compute mins(m−Both0(s)−Both1(s))
in O(n) time. The entire algorithm runs in O(n logn) time. ■

Solution (powers of −1): For any integer 0≤ s ≤ n−m (“shift”), let HD(s) denote
the Hamming distance between P[1 .. m] and T[s+ 1 .. s+m]; we need to compute
mins HD(s).

First we modify the arrays to make Hamming distance behave more like a vector
dot-product. For any index i, define

P ′[i] =

¨

1 if P[i] = 1

−1 if P[i] = 0
T ′[i] =

¨

1 if T[i] = 1

−1 if T[i] = 0
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Then for any shift 0≤ s ≤ n−m, we have
m
∑

i=1

P ′[i] · T ′[s+ i] =
m
∑

i=1

�

1− 2
�

P[i] ̸= T[s+ i]
��

= m− 2 ·HD(s)

Now define two sequences p and t by setting pi = P ′[m− i] and t i = T ′[i] for each
index i. Then for all s we have

m
∑

i=1

P ′[i] · T ′[s+ i] =
∑

i

pm−i · ts+i = (p ⋆ t)m+s

and thus HD(s) = (m− (p ⋆ t)m+s)/2.
We can construct the sequences p and t in O(n) time, compute their convolution

in O(n log n) time using fast Fourier transforms, and finally compute maxs(m− (p ⋆
t)m+s)/2 in O(n) time. The entire algorithm runs in O(n logn) time. ■

Solution (squared differences): For any integer 0 ≤ s ≤ n−m (“shift”), let HD(s)
denote the Hamming distance between P[1 .. m] and T[s + 1 .. s +m]; we need to
compute mins HD(s).

We can express the Hamming distance HD(s) as follows:

HD(s) =
m
∑

i=1

(P[i]− T[i + s])2

=
m
∑

i=1

P[i]2

︸ ︷︷ ︸

SumP

− 2 ·
m
∑

i=1

P[i] · T[i + s]

︸ ︷︷ ︸

Both1(s)

+
m
∑

i=1

T[i + s]2

︸ ︷︷ ︸

SumT(s)

(We can remove the squaring because 02 = 0 and 12 = 1!) We compute each of the
terms SumP, Both1(s), and SumT(s) for all s as follows:

• We can compute SumP in O(m) time by brute force, once for all s.
• We can compute the third term SumpT(s) for all s in O(n) time using the

recurrence SumpT(s) = SumpT(s− 1)− T[s]2 + T[s+m]2.
• Finally, we compute Both1(s) for all s using convolution. Specifically, we define

two sequences p and t by setting pi = P[m− i] and t i = T[i] for each index i.
Then for all s we have

Both1(s) =
m
∑

i=1

P[i] · T[s+ i] =
∑

i

pm−i · ts+i = (p ⋆ t)m+s

We can construct the sequences p and t in O(n) time, and then compute their
convolution in O(n log n) time using fast Fourier transforms.

Finally, we compute maxs(SumP−2 ·Both1(s)+SumT(s)) in O(n) time by brute force.
The entire algorithm runs in O(n logn) time. ■
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Rubric: 10 points. These are not the only correct solutions.

• 1 for using FFT/convolution at all

• 2 for correctly dealing with both 0s and 1s (separately considering 00 and 11 matches, separately
considering 01 and 10 matches, mapping (0, 1) to (−1,1), squared differences, etc.)

• 3 for correctly setting up convolutions (reversing either T or P)

• 3 for correctly reading the minimum Hamming distance from the convolution(s)

• 1 for time analysis (if the algorithm is mostly correct)

A correct algorithm that runs in O(mn) or O(mn log n) time is worth at most 4 points.
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