
CS/ECE 374 A Homework 0 Solutions Fall 2023

1. Describe and analyze algorithms for the following problems. The input for each problem
is an unsorted array A[1 .. n] of n arbitrary numbers, which may be positive, negative, or
zero, and which are not necessarily distinct.

(a) Are there two distinct indices i < j such that A[i] + A[j] = 0?

Solution: The following algorithm runs in O(n logn) time:
2Sum(A[1 .. n]):
sort A
i← 1; j← n
while i < j

if A[i] + A[j]< 0
i← i + 1

else if A[i] + A[j]> 0
j← j − 1

else
return True

return False
■

Solution: The following algorithm runs in O(n) expected time. In any solution
to A[i] + A[j] = 0, either both array entries are zero, or one is positive and the
other is negative. The algorithm handles these two cases separately.

2Sum(A[1 .. n]):
seenZero← False
for i← 1 to n

if A[i] = 0 and seenZero
return True

else if A[i] = 0
seenZero← True

H ← new hash table
for i← 1 to n

if A[i]> 0
Insert(H, A[i])

for i← 1 to n
if Contains(H,−A[i])

return True
return False

■

Rubric: Max 4 points. This question is intended to test your ability to describe an algorithm
clearly and precisely. Clear and unambiguous English is instead of pseudocode is fine, but
executable C++/Java/Python code is not.

Full credit requires handling input arrays with no zeros, with one zero, and with multiple
zeros correctly. These are not the only correct solutions. Full credit for the first solution requires
the initial sort. Full credit for the second algorithm requires the word “expected” in the time
analysis; hashing must be randomized to be efficient!

1

CS/ECE 374 A Homework 0 Solutions Fall 2023

(b) Are there three distinct indices i < j < k such that A[i] + A[j] + A[k] = 0?

Solution: The following algorithm runs in O(n2) time:
3Sum(A[1 .. n]):
sort A
for j← 2 to n− 1

i← 1; k← n
while i < j and j < k

if A[i] + A[j] + A[k]< 0
i← i + 1

else if A[i] + A[j] + A[k]> 0
k← k− 1

else
return True

return False
■

Solution: The following algorithm runs in O(n2) expected time. In any solution
to A[i]+A[j]+A[k] = 0, either all three array entries are zero, or one is positive
and the other two non-positive, or one is negative and the other two non-negative.
The algorithm handles each of these three cases separately.

3Sum(A[1 .. n]):
zeros← 0
for i← 1 to n

if A[i] = 0 and zeros≥ 2
return True

else if A[i] = 0
zeros← zeros+ 1

H+← new hash table
H−← new hash table
for i← 1 to n− 1

for j← i + 1 to n
if A[i]≥ 0 and A[j]≥ 0

Insert(H+, A[i] + A[j])
if A[i]≤ 0 and A[j]≤ 0

Insert(H−, A[i] + A[j])
for i← 1 to n

if A[i]< 0 and Contains(H+,−A[i])
return True

if A[i]> 0 and Contains(H−,−A[i])
return True

return False
■

Rubric: Max 6 points. Full credit requires correctly handling input arrays with repeated entries,
including repeated zeros. These are not the only correct solutions. As in part (a), full credit for
the second algorithm requires the word “expected” in the time analysis.

2

CS/ECE 374 A Homework 0 Solutions Fall 2023

2. (a) Practice only. No submissions will be graded.
Describe and analyze an efficient algorithm that takes a tournament T as input and
returns a Hamiltonian path in T as output.

Solution (“quicksort”, 4/5): The following recursive algorithm mirrors a clas-
sical inductive proof that every tournament contains a Hamiltonian path. The
algorithm takes as input (a pointer to the adjacency matrix of) the tournament T
and (an array containing indices of) a subset U of vertices, and returns as output
an array containing a permutation of U that describes a simple directed path
through T . The top-level call is TournamentHamPath(T, [1,2, . . . , n]), where n
is the number of vertices of T .

TournamentHamPath(T, U[1 .. m]):
if m= 0

return [] 〈〈empty array〉〉
else
〈〈Choose a pivot vertex〉〉
p← any element of S

〈〈Partition S \ p into predecessors and successors of p〉〉
U−← {i ∈ S | i�p is an edge in T}
U+← { j ∈ S | p� j is an edge in T}
〈〈Build the output permutation〉〉
ℓ← |U−|
P[1 ..ℓ]← TournamentHamPath(T, U−)
P[ℓ+ 1]← p
P[ℓ+ 2 .. m]← TournamentHamPath(T, U+)
return P[1 .. m]

The definition of tournament implies that every vertex in U , except the pivot
vertex p, is in exactly one of the subsets U− and U+.

Because T is stored as an adjacency matrix, we can check whether a given
ordered pair u�v is an edge of T in O(1) time. Thus, the total time for all
non-recursive work in TournamentHamPath is O(m). The worst-case running
time of this algorithm satisfies the quicksort recurrence

T (m) = O(m) +max
ℓ

�

T (ℓ) + T (m− ℓ− 1)
�

.

Because m= n in the top-level call, the overall algorithm runs in O(n2) time in
the worst case, just like quicksort. (Moreover, this analysis is tight; in the worst
case, at every level of recursion, one of the subsets U− or U+ is empty.) ■

If we choose the pivot vertex p uniformly at random from S, the resulting
randomized algorithm actually runs in O(n logn) time with high probability.
The analysis is similar, but not identical, to the analysis for randomized quicksort,
which we’ll see in a few weeks. Yes, that means the running time is less than the
number of edges in T with high probability.

3

CS/ECE 374 A Homework 0 Solutions Fall 2023

Solution (“insertion sort”, 4/5): The following iterative algorithm mirrors a
classical inductive proof that every tournament contains a Hamiltonian path.
Assume that the vertices of the input tournament T are (indexed by) the integers 1
through n. The algorithm takes as input (the adjacency matrix of) T , and returns
as output a Hamiltonian path in T , represented as a doubly-linked list of vertices.
The list P stores pointers to its first element P.head and its last element P.tail,
and each vertex in the list has pointers to its successor v.next and its predecessor
v.prev in P.

TournamentHamPath(T):
P ← new list containing only vertex 1
for v← 2 to n

if v�P.head is an edge in T
insert v at the head of P

else if P.tail�v is an edge in T
insert v at the tail of P

else
for each vertex u in P

w← u.next
if u�v and v�w are edges in T

insert v into P between u and w
break 〈〈exit inner for loop〉〉

return P

Each linked-list insertion takes O(1) time. During the vth iteration of the main
for-loop, the while-loop iterates at most O(v) times, so the overall algorithm
runs in O(n2) time. ■

If we store P in a balanced binary search tree, like an AVL or red-black tree,
instead of a linked list, we can actually replace the inner for-loop with a binary-
tree search that runs in O(log n) time. (This is not completely obvious; I may
add more details later.) The resulting algorithm runs in O(n logn) time in the
worst case. Yes, that means the running time is less than the number of edges
in T ! This algorithm was first sketched by Hell and Rosenfeld [1], but without
the data struture details.

[1] Pavol Hell and Moshe Rosenfeld. The complexity of finding generalized paths
in tournaments. J. Algorithms 4(4):303–309, 1983.

4

https://doi.org/10.1016/0196-6774(83)90011-1
https://doi.org/10.1016/0196-6774(83)90011-1

CS/ECE 374 A Homework 0 Solutions Fall 2023

Solution (“mergesort”, 5/5): Suppose the vertices of the input tournament T
are (indexed by) the integers 1 through n. The following recursive algorithm
takes as input (a pointer to the adjacency matrix of) T and two integers i and k,
and returns as output a path in T through vertices i through k, represented as an
array of vertices. The top-level function call is TournamentHamPath(G, 1, n).

TournamentHamPath(T, i, k):
if i = k

return [i] 〈〈array of length 1〉〉
j← ⌊(i + k)/2⌋
L← TournamentHamPath(T, i, j)
R← TournamentHamPath(T, j + 1, k)
return MergePaths(T, L, R)

The helper functionMergePathsmerges the paths L and R into a single directed
path that traverses the vertices of L in order and traverses the vertices of R in
order. The following invariant holds at the end of each iteration of the main
loop: if i ≤ ℓ and j ≤ r, then both P[k]→ L[i] and P[k]→ R[j] are edges in T .

MergePaths(T, L[1 ..ℓ], R[1 .. r]):
i← 1; j← 1

for k← 1 to ℓ+ r
if j > r

P[k]← L[i]; i← i + 1

else if i > ℓ
P[k]← R[j]; j← j + 1

else if L[i]�R[j] is an edge of T
P[k]← L[i]; i← i + 1

else 〈〈R[j]�L[i] is an edge of T 〉〉
P[k]← R[j]; j← j + 1

return P[1 ..ℓ+ r]

The helper algorithm MergePaths runs in O(ℓ+ r) time. The main algorithm’s
running time obeys the standard mergesort recurrence (ignoring floors and
ceilings) T (n) = O(n) + 2T (n/2), so the whole algorithm runs in O(n logn)
time. Yes, the running time is smaller than the number of edges in T . ■

Rubric: Practice only. An algorithm that runs in O(n2) time would be worth at most 80%.
These are not the only correct algorithms; for example, Wu [1] describes a variant of heapsort
that also runs in O(n log n) time. Even though these algorithms are all variants of standard
sorting algorithms, it is not enough to write “sort the vertices”, because the standard sorting
problem assumes that there is a consistent underlying linear order.

[1] Jie Wu. On finding a Hamiltonian path in a tournament using semi-heap. Inf. Proc. Lett.
10(4):279–294, 2000.

5

https://doi.org/10.1142/S0129626400000275

CS/ECE 374 A Homework 0 Solutions Fall 2023

(b) Describe and analyze an efficient algorithm that takes a tournament T as input and
returns as output either (1) the only Hamiltonian path in T or (2) a directed cycle of
length 3 in T . Justify the correctness of your algorithm.

Solution (shortcuts, transitivity):

UniqueHamOr3cycle(T):
if T is acyclic

return TopologicalSort(T)
C ← any directed cycle in T

while C has length greater than 3
u, v← any two non-adjacent vertices in C

if u�v is an edge in T
replace subpath u⇝ v in C with u�v

else
replace subpath v⇝ u in C with v�u

return C

Correctness: If T is acyclic, then it is also transitive: For all vertices u, v, w, if
u�v and v�w are edges in T , then u�w is also an edge in T . It follows that the
edges of T describe a total order on the vertices. Sorting the vertices according
to this total order yields the only Hamiltonian path in T .

On the other hand, suppose T contains a directed cycle. Let C be the shortest
such cycle. If C has length 3, we are done. Otherwise, consider any two vertices
u and v of C that are not adjacent in C . The tournament contains exactly one
of the edges u�v or v�u. In either case, we can “shortcut” along that edge to
obtain a shorter cycle, as shown below, contradicting the definition of C .

u

v

u

v

Shortcutting a directed cycle.

Running time: We can test whether T contains a cycle in O(n2) time using
depth-first search. (See Chapter 6.2 of Jeff’s book.) If T is acyclic, we can
compute its unique Hamiltonian path in O(n log n) time using any fast sorting
algorithm. Otherwise, we can obtain a directed cycle C as a byproduct of
the same depth-first search. If we store C in a doubly-linked list, the entire
shortcutting process takes only O(n) time. The overall algorithm runs in O(n2)
time. ■

6

CS/ECE 374 A Homework 0 Solutions Fall 2023

Solution (quicksort, induction): The following algorithm is a modification of
our first solution to part (a). The input is (a pointer to the adjacency matrix of)
a tournament T . The output is either a 3-cycle whose vertices are in U , or a
simple directed path in T that visits every vertex.

UniqueHamOr3Cycle(T):
if T has no vertices

return the empty path
〈〈Partition the vertices〉〉
p← any vertex in U
V−← {u ∈ V (T) | u�p is an edge in T}
V+← {v ∈ V (T) | p�v is an edge in T}
〈〈Look for 3-cycles that contain p〉〉
for all v+ ∈ V+

for all v− ∈ V−

if v+�v− is an edge in T
return p�v+�v−→ p

〈〈Look for 3-cycles before and after p〉〉
T−← subgraph of T induced by V−

P−← UniqueHamOr3Cycle(T−)
if P− is a 3-cycle

return P−

T+← subgraph of T induced by V+

P+← UniqueHamOr3Cycle(T+)
if P+ is a 3-cycle

return P+

〈〈No 3-cycles found: return the unique Hamiltonian path〉〉
return P−�p�P+

Running time: Let T (n) denote the worst-case running time of our algorithm
when the input tournament T has n vertices. Let n− and n+ denote the number
of vertices in V− and V+, respectively. The worst-case running time obeys the
recurrence

T (n)≤ max
n−+n+=n−1

�

T (n−) + T (n+) +O(n2)
�

,

whose solution is T(n) = O(n3). (In the worst case, either n+ = 0 or n− = 0 at
every level of recursion.

However, we can get a better upper bound by observing that the running
time is dominated by the number of times we ask whether u�v or v�u is an
edge of the input tournament. For each pair of vertices u and v, we perform
this test exactly once, so the overall number of tests is exactly

�n
2

�

. We conclude
that our algorithm runs in O(n2) time. We can also derive this time bound by
considering the more careful recurrence

T (n)≤ max
n−+n+=n−1

�

T (n−) + T (n+) +O(n+ n+n−)
�

,

7

CS/ECE 374 A Homework 0 Solutions Fall 2023

Correctness: Let T be any tournament, and suppose UniqueHamOr3Cycle(T)
does not return a 3-cycle. Let P = v1�v2� · · ·�vn be an arbtirary Hamiltonian
path in T . We claim that UniqueHamOr3Cycle(T) must return P, which
implies that P is the only Hamiltonian path in T .

First, we must have p = uk for some index k. Let P− denote the prefix
v1�v2� · · ·�vk−1 of P before the pivot vertex p, and let P+ denote the suffix
vk+1�v2� · · ·�vn of P after the pivot vertex p. (One or both of these subpaths
may be empty.)

If k = 1, then V− is empty, so UniqueHamOr3Cycle(T−) must return the
empty path P−. Otherwise, we must have vk−1 ∈ U−, because there are no
edges from V+ to p, and thus vi ∈ V− for all i < k, because there are no
edges into V−. It follows that P− is a Hamiltonian path in T−. Because the
recursive call UniqueHamOr3Cycle(T−) did not return a 3-cycle, the induction
hypothesis implies that P− is the only Hamilotnian path in T−. In particular,
UniqueHamOr3Cycle(T−) must return P−.

A symmetric argument implies that UniqueHamOr3Cycle(T−) must re-
turn P+ (even if k = n). We conclude that UniqueHamOr3Cycle(T) must
return the Hamiltonian path P = P−�p�P+. ■

Rubric: 10 points = 4 for algorithm + 2 for time analysis + 4 for proof of correctness. These
are not the only correct solutions. These are not the only valid proofs of correctness for these
algorithms.

An algorithm that runs in O(n3) time is worth at most 8 points; scale partial credit. (For
example: Consider every triple of vertices; either some triple defines a cycle, or the tournament
is transitive.)

8

CS/ECE 374 A Homework 0 Solutions Fall 2023

3. Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression
tree in normal form.

Solution (double induction): For any arithmetic expression trees A and B, let (A+B)
denote the expression tree whose root is a +-node, whose left subtree is A, and whose
right subtree is B. Similarly, let (A× B) denote the expression tree whose root is a
×-node, whose left subtree is A, and whose right subtree is B. Finally, let fT denote
the function represented by the arithmetic expression tree T . The definitions imply
immediately that f(A+B) = fA+ fB and f(A×B) = fA× fB.

Lemma 1. For any arithmetic expression trees L and R in normal form, the expression
tree (L + R) is in normal form.

Proof: Let v be an arbitrary +-node in (L + R) that is not the root. There are three
cases to consider.

• If the parent of v is in L, then it must be a +-node, because L is in normal form.
• If the parent of v is in R, then it must be a +-node, because R is in normal form.
• If the parent of v is the root of (L + R), then it must be a +-node by definition.

We conclude that every +-node in (L + R) is either the root or the child of another
+-node. Thus, (L + R) is in normal form. □

Lemma 2. For any arithmetic expression trees L and R in normal form, there is an
arithmetic expression tree in normal form that is equivalent to (L × R).

Proof: Let L and R be arbitrary arithmetic expression trees in normal form. Without
loss of generality, assume that L has more +-nodes than R; otherwise, we can swap
the two subtrees. (Straightforward definition-chasing implies that the expression tree
(R× L) is equivalent to (L × R).)

As an inductive hypothesis, assume that for every proper subtree S of L, there is
an arithmetic expression tree in normal form that is equivalent to (S × R). There are
two cases to consider:

• Suppose subtree L has no +-nodes, and therefore R has no +-nodes. (For
example, L might be a single variable node.) Then the expression tree (L × R)
has no +-nodes, and is therefore vacuously in normal form.

• Suppose subtree L contains a +-node. Then the root of L must be a +-node,
because otherwise L would not be in normal form. Let LL and LR be the left and
right subtrees of L, respectively, so L = (LL + RR). Define a new expression tree
T := ((LL×R)+ (LR×R)). Straightforward definition-chasing implies that T is
equivalent to (L × R):

fT = f((LL×R)+(LR×R)) [by definition of T]
= f(LL×R) + f(LR×R) [by definition of f(A+B)]
= (fLL × fR) + (fLR × fR) [by definition of f(A×B), twice]

9

CS/ECE 374 A Homework 0 Solutions Fall 2023

= (fLL + fLR)× fR [by the distributive law]
= f(LL+RR) × fR [by definition of f(A+B)]
= f((LL+LR)×R) [by definition of f(A×B)]
= f(L×R). [by definition of L]

Because LL is a proper subtree of L, the induction hypothesis implies that there
is a normal-form expression tree L′ equivalent to (LL × R). Similarly, because
LR is a proper subtree of L, the induction hypothesis implies that there is a
normal-form expression tree R′ equivalent to (LR× R). Define a new expression
tree T ′ := (L′ + R′). Because L′ and R′ are in normal form, Lemma 1 implies
that T ′ is in normal form. Straightforward definition-chasing implies that T ′ is
equivalent to T , and therefore equivalent to (L × R).

+
R

LL LR RLL LR R

×
× ×

+
(L × R) T

L’ R’

+
T’

In both cases, we conclude that there is an arithmetic expression tree in normal form
that is equivalent to (L × R). □

Now we are ready to prove the main theorem. Let T be an arbitrary arithmetic
expression tree. Assume that for any proper subtree S of T , there is an arithmetic
expression tree in normal form that is equivalent to S. There are three cases to
consider.

• If T is a single variable node, then T is already in normal form.

• Suppose T = (L + R) for some arithmetic expression trees L and R. Because
L and R are proper subtrees of T , the induction hypothesis implies that there
are normal-form expression trees L′ and R′ that are equivalent to L and R,
respectively. Define a new expression tree T ′ := (L′ + R′). The definition of
equivalnce implies that fL′ = fL and fR′ = fR, and therefore

fT ′ = f(L′+R′) = fL′ + fR′ = fL + fR = f(L+R) = fT .

In other words, T ′ is equivalent to T . Because both L′ and R′ are in normal form,
Lemma 1 implies that T ′ = (L′ + R′) is also in normal form.

• Finally, suppose T = (L × R) for some arithmetic expression trees L and R.
Because L and R are proper subtrees of T , the induction hypothesis implies
that there are normal-form expression trees L′ and R′ that are equivalent to L
and R, respectively. Straightforward definition-chasing implies that (L′ × R′) is

10

CS/ECE 374 A Homework 0 Solutions Fall 2023

equivalent to T , exactly as in the previous case. Lemma 2 implies that there is an
expression tree T ′ in normal form that is equivalent to (L′ × R′), and therefore
equivalent to T .

In all cases, we conclude that there is an arithmetic expression tree in normal form
that is equivalent to T . ■

Solution (potential function): The high-level strategy for this proof is fairly intuitive.
Consider an arithmetic expression tree T that is not in normal form. Let u be an
arbitrary +-node in T whose parent v is a ×-node. Without loss of generality, we can
assume that u is the left child of v, so in the same notation as the previous solution,
the subtree rooted at v has the form ((LL + LR)× R). Now define a new expression
tree T ′ by applying the distributive law at v, replacing its subtree ((LL+ LR)×R) with
((LL × R) + (LR× R)), as shown below. Straightforward definition-chasing implies
that T and T ′ are equivalent; see Lemma 2 in the previous proof. We then recursively
transform T ′ into an equivalent tree in normal form.

+
R

LL LR RLL LR R

×
× ×

+
u

v v’

Applying the distributive law.

But the new tree T ′ isn’t always “smaller” than T . Specifically, T ′ could have
more nodes than T , more +-nodes than T , more ×-nodes than T , more +-nodes with
×-parents than T , greater depth than T , and so on. How do we know that our
simple algorithm—repeatedly apply the distributive law—actually halts?!

To prove that our iterative improvement strategy is a real algorithm, we define
a positive integer potential for any expression tree, with the property that applying
the distributive law always decreases potential. We define our potential function
recursively as follows:

Φ(T) =

2 if T is a single leaf
Φ(L) +Φ(R)+ 1 if T = (L + R)

Φ(L) ·Φ(R) if T = (L × R)

Our main claim is that if we apply the distributive law anywhere in any expression
tree T to obtain a new tree T ′, then Φ(T ′) < Φ(T). Because potential is always a
positive integer, we can only decrease it a finite number of times.

11

CS/ECE 374 A Homework 0 Solutions Fall 2023

×
x +

y z

+
×

x z

×
x y

×
x

×
x

+

×
x z

×
x y

×
x

×
x4 4 4

8 8

4

10

20 18

5

9

17

2

2 2 2 2 2 2 2 2 2 2

22

2 2

Three equivalent expression trees with different potentials.
The number next to each node is the potential of the subtree rooted at that node.

Lemma 3. For every arithmetic expression tree T , we have Φ(T)≥ 2.

Proof: Let T be any arithmetic expression tree. Assume for every proper subtree S
of T that Φ(S)≥ 2. There are three cases to consider.

If T is a leaf, then φ(v) = 2 by definition.
If T = (L + R) for some expression trees L and R, the definition of Φ and the

induction hypothesis imply that Φ(T) = Φ(L) +Φ(R) + 1≥ 2+ 2+ 1> 2.
Finally, if T = (L × R) for some expression trees A and B, the definition of Φ and

the induction hypothesis imply that Φ(T) = Φ(L) ·Φ(R)≥ 2 · 2> 2. □

Lemma 4. For any expression trees LL, LR, and R, we have Φ((LL + LR) × R) >
Φ((LL × R) + (RR× R)).

Proof: This is mostly definition-chasing:

Φ((LL + LR)× R)

= Φ(LL) ·Φ(R) + Φ(LR) ·Φ(R) + Φ(R) by definition of Φ
> Φ(LL) ·Φ(R) + Φ(LR) ·Φ(R) + 1 by Lemma 3
= Φ((LL × R) + (RR× R)) by definition of Φ □

Lemma 5. Let T be any expression tree, let S be any subtree of T , let S′ be any
expression tree, and let T ′ be the expression tree obtained from T by replacing S
with S′. If Φ(S′)< Φ(S), then Φ(T ′)< Φ(T).

Proof: Straightforward definition-chasing. □

Now we are ready to prove the main result. Let T be an arbitrary arithmetic expression
tree. As an inductive hypothesis, assume that for any tree T ′ with Φ(T ′) < Φ(T),
there is a normal-form expression tree equivalent to T ′.

If T is already in normal form, the theorem is trivial. Otherwise, without loss of
generality, T contains a subtree S of the form ((LL+ LR)×R). Define a new expression
tree T ′ by applying the distributive law, replacing S with S′ = ((LL × R) + (LR× R)).
We’ve already shown that the old tree T and the new tree T ′ are equivalent.

Lemma 4 implies φ(S′)< Φ(S), so Lemma 5 implies Φ(T ′)< Φ(T). The induction
hypothesis now immediately implies that there is a normal-form tree equivalent to T ′,
and therefore equivalent to T . ■

12

CS/ECE 374 A Homework 0 Solutions Fall 2023

Rubric: Max 10 points. These proofs are (intentionally) more verbose than necessary for full credit.
These are not the only correct proofs. In particular, the potential function used in the second proof is
not the only useful potential function (but it’s the simplest one I know).

Proofs of the form “Suppose some expression tree T can be converted to normal form; now add
something to T get a new tree T ′. . .” are automatically worth zero points. That’s even worse than
weak induction; it’s not induction at all!

13

