CS 473 Practice Final Exam Solutions Fall 2024

1. Suppose we are given a set of n rectangular boxes, each specified by their height, width,
and depth in centimeters. All three dimensions of each box lie strictly between 10cm and
20cm, and all 3n dimensions are distinct. As you might expect, one box can be nested inside
another if the first box can be rotated so that is is smaller in every dimension than the
second box. Boxes can be nested recursively, but two boxes cannot be nested side-by-side
inside a third box. A box is visible if it is not nested inside another box.

Describe and analyze an algorithm to nest the boxes, so that the number of visible
boxes is as small as possible.

Solution: We need to assign as many boxes as possible to a unique larger box. To
that end, we define a bipartite graph G = (L UR, E), where L contains a vertex for
each box, R contains a vertex for each box, and uv € E if and only if box u can nest
inside box v. This graph has 2n vertices and O(n?) edges, and we can construct it in
0(n?) time by brute force.

Now we compute a maximum matching in G, using the algorithm described in
the notes (which is based on Ford-Fulkerson), in O(VE) = O(n®) time. Then for each
edge uv in the matching, put box u inside box v. A box is visible if and only if the
corresponding node in L is not adjacent to an edge in the matching. Thus, minimizing
the number of visible boxes is equivalent to maximizing the number of edges in the
matching.

Overall, the algorithm runs in O(n?) time. [|

Solution: We build a directed acyclic graph G whose vertices are the boxes, with an
edge u—v if and only if box u fits inside box v. Then we find the smallest number of
disjoint paths that cover G, using the algorithm in the textbook; each path corresponds
to a nested sequence of boxes. The algorithm runs in O(VE) = 0(n?) time. []

Rubric: Standard graph-reduction rubric. No correctness proof required. These are not the only
correct solutions.

CS 473 Practice Final Exam Solutions Fall 2024

2. Consider the following randomized version of mergesort. The input is an unsorted array
A[1..n] of distinct numbers. The MERGE subroutine takes two sorted arrays as input and
returns a single sorted array, containing the elements of both input arrays, in linear time.

RANDOMIZEDMERGESORT(A[1..1n]):
ifn<1
return A

L—0; r<0
forie—1ton
with probability 1/2
L—1+1
L[]« A[i]
else
rer+1
Rlr] < Ali]
L < RANDOMIZEDMERGESORT(L[1..£])
R <« RANDOMIZEDMERGESORT(R[1..7])
return MERGE(L,R)

(a) Fix two arbitrary indices i # j. What is the probability that A[i] and A[j] appear in
the same recursive subproblem (either L or R)?

Solution: 1/2]

Rubric: 1 point.

(b) What is the probability that A[i] and A[j] appear in the same subproblem for more
than k levels of recursion?

Solution: 1/2¢ [|

Rubric: 1 point. No penalty for 1/257 or 1/2k*1 (off-by-one errors in level counting), and
similarly for later parts.

(c) What is the expected number of pairs of items that appear in the same subproblem
for more than k levels of recursion?

Solution: (3)/2k [

Rubric: 2 points.

CS 473

Practice Final Exam Solutions Fall 2024

(d) Give an upper bound on the probability that at least one pair of items appear in the
same subproblem for more than k levels of recursion. Equivalently, upper bound the
probability that the recursion tree of RANDOMIZEDMERGESORT has depth greater
than k.

Solution: (5)/2*
Let X be the number of pairs that appear together in some level-k subproblem.
Then Pr[X > 1] < E[X]/1 = (Z)/Zk by Markov’s inequality. [|

Solution: (5)/2k

Fix k. Let X;; indicate whether A[i] and A[j] appear in the same level-k
subproblem, let X = . _ iXij be the number of pairs that appear together in
some level-k subproblem, and finally let u = E[X] = (g)/Zk. The variables

X;; are pairwise indpendent, so we can apply Chebychev’s inequality to bound
Pr[X > 1] as follows:

1
PriX>1]=Pr[X > (1+6)u] where 6§ = ——1
U
1
< — by Chebyshev
62u
__ b
(1—p)?
This upper bound is slightly larger than u, but not enough to matter. [|

Solution (partial credit): 1—(1—1/2%))

This would be the exact answer if pairs were fully independent, but they are
not. If A[1] and A[2] appear in the same level-k subproblem, and A[1] and A[3]
also appear in the same level-k subproblem, then A[2] and A[3] appear in the
same level-k subproblem with probability 1, not with probability 27

On the other hand, the World’s Most Useful Approximation (1 + x ~ e* when
x & 0) implies 1 —(1—1/29)&) &~ 1 - G2 n 1 (1= (1)/2%) = () /2%, s0
this is actually pretty close, at least when k > 21gn. [|

Rubric: 2 points.
* 1 point for expression equivalent to ('21)/2" after significant simplification

CS 473 Practice Final Exam Solutions Fall 2024

(e) For what value of k is the probability in part (d) at most 1/n?

Solution: k=31gn
If k=3lgn, then Pr(X > 1] < (g)/2k = (g)/n3 =n(n—1)/2n*<1/n. =N

Rubric: 2 points =1 for “log n” + 1 for leading constant > 3.
e 1% for expression equivalent to 31gn &+ O(1) after significant simplification (for example:
k=1g(n(3)))
e 1point for ©®(logn). The leading constant must be at least 3.

(f) Prove that RANDOMIZEDMERGESORT runs in O(nlogn) time with probability at least
1—1/n.

Solution: The total work at each level of the recursion tree is O(n). We just
proved that with probability at least 1 — 1/n, the recursion tree has depth at
most 31gn. We conclude that with probability at least 1 —1/n, RANDOMIZED-
MERGESORT runs in at most 31gn - O(n) = O(nlogn) time. [|

Rubric: 2 points. This is not the only correct proof.

CS 473 Practice Final Exam Solutions Fall 2024

3. Suppose we are given a set R of n red points, a set G of n green points, and a set B of n blue
points; each point is given as a pair (x, y) of real numbers. We call these sets separable
if there is a pair of parallel lines y = ax + b and y = ax + b’ such that (1) all red points
are below both lines, (2) all blue points are above both lines, and (3) all green points are
between the lines.

(@) Describe a linear program that is feasible if and only if the point sets G,B,R are
separable.

Solution: Our linear program has three variables a, b, and b’, representing the
pair of lines y = ax + b and y = ax + b’. We only care about feasibility, so the
objective function doesn’t matter.

maximize whatever

subject to ax+b=>y for each red point (x, y)
ax+b >y for each red point (x, y)
ax+b>y for each green point (x, y)
ax+b' <y for each green point (x, y)
ax+b<y for each blue point (x, y)
ax+b <y for each blue point (x, y)

The green constraints imply b > b’, which means the first set of red constraints
and the last set of blue constraints are redundant. [|

(b) Describe a linear program whose solution describes a pair of parallel lines that
separates G, B, R whose vertical distance is as small as possible. (Here you can assume
that G, B, R are separable.)

Solution: We use exactly the same constraints as part (a), with the objective

minimize b — b’

CS 473 Practice Final Exam Solutions Fall 2024

4. Let G = (V, E) be an arbitrary dag with a unique source s and a unique sink t. Suppose
we compute a random walk from s to t, where at each node v (except t), we choose an
outgoing edge v—w uniformly at random to determine the successor of v.

(a) Describe and analyze an algorithm to compute, for every vertex v, the probability
that the random walk visits v.

Solution: For any vertex v, let Prob(v) denote the probability that our random
walk visits v. This function satisfies the following recurrence, where outdeg(u)
denotes the number of edges leaving u.

1 ifv=s
Prob(v) = > Prob(u)/outdeg(u) otherwise
u—v

We need to compute this function for every vertex v.

We can memoize this function into the dag itself, adding a field v.Prob to
every node v, and we can evaluate the function for all v in forward topological
order, in O(V + E) time.

RANDOMWALKPROBABILITIES(G):
topologically sort G
for all vertices v in topological order
ifv=s
v.Prob « 1
else
v.Prob < 0
for all edges u—v
v.Prob < v.Prob + u.Prob /u.outdeg

Equivalently, as usual, we can evaluate this function for all v by by performing
a depth-first search of the reversed graph GX starting at t.

RANDOMWALKPROBABILITIES(G):
for all vertices v
v.Prob « —1 {(Sentinel value))
t.Prob < RECRWP(t)

RECRWP(v):
if v.Prob < 0

ifv=s
v.Prob « 1
else
v.Prob <« 0
for all edges u—v
v.Prob « v.Prob + RECRWP(u)/u.outdeg
return v.Prob

Rubric: 5 points: standard dynamic programming rubric.

CS 473 Practice Final Exam Solutions Fall 2024

(b) Describe and analyze an algorithm to compute the expected number of edges in the
random walk.

Solution: Linearity of expectation implies that the expected number of vertices
in the random walk is exactly > Prob(v). So the following algorithm computes
the expected number of edges in the random walk in O(V + E) time.

RANDOMWALKEXPECTEDLENGTH(G):
RANDOMWALKPROBABILITIES(G)
{0
for all vertices v

{ — {+v.Prob
return { — 1

Rubric: 5 points =4 for algorithm + 1 for running time. Standard DP rubric for solutions that
use DP directly.

CS 473 Practice Final Exam Solutions Fall 2024

5. You are managing a company with a large number of project teams. Each project team
contains exactly three people. A single employee could belong to any number of project
teams, but all of the project teams are different.

For each employee x, you know a positive real number trouble(x), which roughly
estimates the probability that x will cause trouble. Your task is to choose a subset X
of the employees that includes at least one member of each project team, such that
D e trouble(x) is as small as possible.

(@) Write a linear programming relaxation for this problem.

Solution: Identify the employees with the integers 1 through n. The linear
program has a variable x;, which intuitively indicates whether employee i is
invited to the meeting.

n
minimize Z X; - trouble;
i=1
subject to Xi+xj+x 21 for each team {i, j, k}
x; =0 for each employee i

(To formulate the problem exactly using an integer linear program, replace each
constraint x; > 0 with x; € {0,1}.) [|

(b) Describe an efficient 3-approximation algorithm for this problem. [Hint: Round the
solution to your linear program from part (a).]

Solution: Let OPT denote the value of the optimal integer solution to our linear
program. Let x* = (x},x3,...,x) be the optimal fractional solution to the linear
program in part (a), and let OPT* =, x;} - trouble; denote its objective value.
We immediately have OPT* < OPT.

Define a new vector x” = (x7,x5,...,x,) by setting

/

=

1 if x;“ >1/3
0 otherwise

and let OPT' =), x| - trouble;. We invite employee i to the meeting if and only
if x! = 1.

For each team {i, j, k}, the constraint x;."+x;'f+x;§ > 1implies max{x}, x;f, b4 -
1/3, so at least one of the variables x/, x;,x,i is equal to 1. Thus, at least one
member of each team is invited to the meeting.

Finally, we have x! < 3x for each employee i, which implies OPT’ <
3-0OPT*<3-0PT. |

A 3-approximation algorithm that is correct when trouble(x) = 1 for every
employee x is worth half credit.

CS 473 Practice Final Exam Solutions Fall 2024

Solution: In this special case, we are trying to minimize the number of invited
employees. The input to the following algorithm is the set T of all project teams;
the output is the set of employees to invite.

DumMBINVITE(T):
X—J
for all teams {i, j,k} €T
ifigXand j¢X and k €X
X —XU{i,j,k} (%)

return X

Let OPT denote the smallest set of employees that we can invite, and suppose
DuMBINVITE executes line (x) exactly K times. OPT must contain at least one
employee from each team {i, j, k} that invokes line (x). Thus, |OPT|> K. On
the other hand, |X| = 3K. We conclude that |X| < 3|OPT|. []

CS 473 Practice Final Exam Solutions Fall 2024

6. Suppose we need to distribute a message to all the nodes in a given binary tree. Initially,
only the root node knows the message. In a single round, each node that knows the
message is allowed (but not required) to forward it to at most one of its children. Describe
and analyze an algorithm to compute the minimum number of rounds required for the
message to be delivered to all nodes in the tree.

Solution: Let MinR(v) denote the minimum number of rounds need to spread a
message from v to all its descendants. We need to compute MinR(root). This function
obeys the following recurrence:

0 if v is a leaf

1+ MinR(w) if w is only child of v
~ [max {1 + MinR(v.left), 2+ MinR(v.right)}

i {max {2 + MinR(v.left), 1+ MinR(v.right)}

MinR(v) =
} otherwise

We can memoize this function into the tree itself. Since the value at every node
depends only on the values at its children, we can evaluate this function at all nodes
by a postorder traversal of the tree. The resulting algorithm runs in O(n) time. ®

Rubric: Standard dynamic programming rubric.

10

