
LECTURE 7 (September 17th)

Probability Theory Review

Motivation Randomized Algorithms

For the next few weeks. we will look at randomized algorithms

These are algorithms which , apart from doing anything a deterministic algorithm does
,

also have access to a library function

Random (k) -> outputs a uniformly random number in
21

,
2,
.... -., k3

We will assume axiomatically that such a library function can be implemented and not worry
about generating perfect random numbers

Why would we want to do this ?

# Faster and Simpler Algorithms

Worst-case run time of an algorithm max T(x)=

|x|= 11

Example Recall , the quicksort algorithm does the following
-

-

Given an arrayAll

· Rick a pirot p
· Put all elements <p to the left of p in the array

(p) right)

Worst-case complexity = ECM2) for any simple pivot rule

# we pick the pivot randomly , then worst-case expected run-time is 0 Ch . logn)

Now
,
we are looking at max Ei[T(x)

Win ↳
over the randomness used in the algorithm

In fact , Onlogn) time with high probability for any input x
so
,
in practice , we have an Och - logn) time algorithm

①



Note · This is not average-case analysis
-

We are not assuming anything about the worst-case input
An adversary who knows the algorithm can pick the worst-case input
But the algorithm generates its own randomness on the fly
which the adversary does not know

② No known deterministic algorithms

#aciple Generating Prime Numbers

Oversimplifying the RSA cryptosystem which forms the backbone of most

practical encryption is based on the following fact :

· Take two large primes p and q
· Release n= p . q as the public-key
· Given n one can encrypt the message , but to decrypt , one needs
its prime factors , which is believed to be a hard task

So
,
this leads to the question : how do we find large prime numbers ?

i
. 2. .

Given n
, find a prime in [m

,
2m) in time poly (log(n)
~ -

Bertrand's postulate input-size of 12

guarantees its existence

There is no deterministic algorithm known to generate/find primes
but we can check if a given number is prime or not

Prime numberTheorem # primes in an interval of size in
on

#gorithm Pick a random number in [m
, In]

Accept if it is primea repeat otherwise

whp in logn time , algorithm outputs a prime number

Probability Theory

* discrete probability space (1 , 1) has two components :

= sample space 12 This is a non-empty countable set. You can imagine these
as the set of all things that can possibly happen

②



# Probability measure I This is a function I : 1- IR satisfying

# [W] > O fwER and &[R] = 1
WER

Example · Fair Coin & = EH
,
TS

,
PCH] = [T] = 712

· Biased Coin 1= EH , TS ,
#(H) = 1/3 and ICT] = 43

· Fair six-sided die

· Random card from a deck

Events These are subsets of 1. In particular , singleton sets Ew] are called
-

elementary events or atoms . You can think of these as all possible
yes- no questions , you can ask about the things that happen .

If Est is an event , its probability

#[E] = & #[b] e. g . P(Q) = o
VER

#[r] = 1

#ote : we have extended the function IP : 1+ [0 , 17 to

a function I : 2- 10
,
13

Example. Roll two fair die , one red and the other blue

# = 2 1 , 2, 3 ,4 , 5,63x91 , 2, 3 , 4 , 5, 63

# [v] = 1 w = R

36

# (two S's) = (15
,
5)] = 5

# [atmost one S's] = 1P[-twoSs] = 2

Typically , we use boolean logic operation to denote combination of events

E. g. A U B by A vB

An B by An B

# by - A

Events A andJ are disjoint if An B = /

③



Conditional Probability Probability of A conditioned on B is defined as

IP/A/B] =
Ax ]

#[B]

Example , Ifred 51 at least one s] =
[reds n atleast one s

#Lat least one S]
-

=
-

= -
Il

-

Remark
,
Conditional probability is unintuitive

-Puzzle by Gary Foshee

I have two children
.
One of them is a boy .

What is the probability
that I have two boys ?

born on a Tuesday
I have two children

.
One of them is a boy. What is the probability

that I have two boys ?

Independence Two events A and B are independent iff

IP(AxB] = /A] · [B] or equivalently

#(A/B] = (A) and vice-versa

&mark Independence and disjointness are two very different conditions

Basic IdentitiesUnionbound A
, .... An are events in (2

,
1) A . A2 As

There #[i] [A] ⑳i=1

If Ais were pairwise disjoint , then we get an equality above

A B ·

Inclusion - Exclusion #(AvB) = (A) + [B] - [Ax B]

T
For events A

, .. ...,
An
,
we get AxB

/ti) = 1 - 2 ( [i]
I [M]

·

④



#dependentUnion If A and B are independent events , then
A and B

-
A and BC

.
As and I

are also independent (Prove it]

This also generalizes to n mutually or fully independent events

If A, . . . .An are independent = Toss2independent
unbiasedoa

#(A) = 1 - [A]
# (at least one H= Ail = 1-

= 1- 1-PAi)

-ayes' Rule #(AxB] = [A] · 1/BIA]
=1[B]· PFAIB]

·

Equality Testing

11

Given two binary rectors u
,
ve [0, 13

Decide if they are equal or not

Only operation that is allowed : DOTPRODUCT (a ,
b) - Time B(n)

take dot product (nod 2) of any two binary rectors a , b e50 , 13 "

i . e. output is
1 if<a ,

by is odd
(a

,
b) mod2 = aibi (mod2) = E-
1 O O/w

= [aib ;
I= 1

Algorithm · Pick a random vectorvf 50 , 13 "
-

· If (4,r) = <V , r) mod2 - then output EQUAL
· Else output NOTEQUAL

Theorem #[Algorithm errs] = and is running time is 0 (n+ (n)
-

↳
Proof in the next Lecture

obvious

Repetition/Amplification Trick Run the algorithm += /10 #7 times independently
If any execution says NOT EQUAL= output NOT EQUAL

ON => output EQUAL

⑤



Again , algorithm only errs if a V.

# [Algorithm errs] = I [all i iteration return EQUAL]

= = 2 =o

Runtime is now 0 (n + &(1) .10

⑥


