
LECTURE 1 (August 27th)

RECURSION

As a warmup ,
we will talk about recursion

,
which is one of the most important design tools

for algorithms .

The basic idea is that you want to solve an instance of a problem and the way you solve it is

by not solving it but by making a little bit of progress until we have one or more smaller

instances of the problem -
which you solve by delegating to the "recursion fairy" or just brute-force

it if is constant-sized .

As a canonical example ,
consider the Tower of Hanoi problem .

#verof Hanoi

This is a physical puzzle designed in late 1800s by the French mathematician Edward Lucas

There are three pegs and on one of them ,
there is a stack of circular discs of different

sizes stacked up so that the sizes increase from top to bottom

Left Middle right

Goal : Move all discs from left to the right peg by following these rules :

-

We can only more one dise at a time

② a disc can only be on top of a larger disc

How do we do this ?

Here is how we are going to think about it

We want to move the bottom most disc to a different peg .
In order to do this ,

we have to

get the other discs out of the way. This is the same problem with one less disc .

We can assume that the

recursion fairy solves the
smaller problem and our

left middle right only job now is more the

largest disc to the right pegr
&STEP1 Recursion Fairy-

solves it

①

left middle right left middle right

*STEP 2 Our job EP3 Recursion Fairy
solves it

The algorithm formally to movea discs from source (src) to destination (dst) peg
using a temporary (tmp) peg is as follows .

Hanoi (n , src , ast , tmp) What about the base case ?

If n30 : There has to be a largest disc , so
Hanoi (11-1

,
Suc

, Emp , dst) = has to be a positive integer , otherwise
More disc n from se to dst it does not make sense to call Hanoi (n-1. (

Hanoi (n-1 , Emp , suc , ast)

This means that if the condition no is violated
,
we have to solve the only remaining

case of n = 0 differently. But in this case , there are no clises , so there is nothing to do
and the algorithm above will work .

#rice : Believe in the recursion fairy and check assumptions about boundary cases

We also have to analyze the algorithm :

Prove that it is correct - this is easy to do here , so this is for you to think about

& Running Time
,
i . e
.,
the number of moves

Let T(M) = number of mores for 1 discs

For our algorithm- T(n) = S
8 if n = 0

T(n-1) + 1 + T(n -1) otherwise

This recurrence relation is not useful to compare running time of algorithms,
so we want to get a closed form big-0 expression for T(n) by opening

up the recurrence

Let's review how to solve recurrences. We will see another way later , but the

most obvious way is to guess and check .

How to guess ? Use wikipedia which says T(n) = 2"-1 or write down a few small

values and make a guess by looking at the pattern .

②

1 0 1 2345 ---

T(n) 0 1 371531....

We still need to verify that the guess is correct .

How do we prove this
? Induction

#keover TCM) = 2"-1 for all n o

#roof Let n be an arbitrary integer 130
.

Induction Hypothesis For all Kn
,

we have T(k) = 2"- 1

Base Case n= 0
.
Then

,
T(0) = 0 = 20 - 1

General Case 30
.

T(M) = 2TCH- 17 + 1
-

=2(2"-
=

- 1) + 1 (Induction Hypothesis)
= 2" -2 + 1

= 2" - 1 #

Integer Multiplication

Lattice based multiplication algorithm uses product of single digit integers to

compute products of large integer

E
.g.

123 We multiply each digit of one number by
x 456 all of the digits of the other number ,
738 write down the partial products and
615 add them up
492

56088

To multiply two n-digit numbers ,
we need to write down n

2

digits
So

,
this takes O2) time - two nested for loops with no recursion

Algorithms for multiplying integers in OCH' times have been known for millenia

Kolmogorov in 1953 formulated the "n" conjecture :

any algorithm for multiplying two n-digit integers ,
needs at least in steps

Kolmogorov organized a seminar to get mathematicians to work on the conjecture
Karatsuba was a graduate student who attended the first seminar and came up with

a faster algorithm. The seminar was cancelled afterwards.

③

Karatsuba's Idea

Idea : Any numbera with n digits can be written as a combination of two numbers

withNe digits

X = a . 10" + b

↓ digits

Let x = c . 10"2 + d be another number

n digits

Gal: Compute product of X and y

Xy
= ac . 10" + (a . d + b . c)10

+

+ b -d

We have reduced multiplication of one instance of two digit numbers
to computing four products of " digit numbers

We can let the recursion fairy compute these products and use the identity
above to compute X -

Y

Multiplying by powers of 10 corresponds to adding extra zeros which is

easy to do

Addition is also easy to do
.

So
,

we get an algorithm whose running time TCM) satisfies

T(m) = 4T(z) + O(
Time to add extra zeros and perform addition

How do we solve this recurrence ? We can gress and check ,
but to show another method

we are going to use a recurrence tree ·

We draw a tree for each recursive call and write how much non-recursive work

is performed in that recursive call

-> Total work at this level m
1

-- -
7/2 4/2 n/2 n(2 - 24

-1 - i :

4/4 n/4Mm n/4 -> 41

:
Level & -> 2? 1

④

Total amount of work = 2% = n(21) where L is the maximum level
l= 0

or maximum depth of recursion
This is a geometric series ,

so '21 = 0(2)
l= 0

What is2 ? Each time we recurse
,

we reduce the problem size by 2

After -= logn times
,

we have -digit number ,
so we can multiply

without recursion

Thus. T(
= 0 (n : 21524) = 0(2)

This did not help ! An intritive way of seeing why this is
2

is to pick one digit in
each number

,
then there must be one bottom most recursive call where these two

digits get multiplied .
So

.
OCT2) is really the best we can hope for this algorithm ,

since

every pair of digits gets multiplied .

Karatsuba's Algorithm was based on one more idea :

Recall x.y
= ac . 10" + (a · d + b . c) 10

+1

+ b -d

We computed by recursion ac
,
and

,
b . c

,

and bd

But what we want is ac
,
ad + b . c

,
and b . d

Karatsuba observed that (a- b) (c - d) = ac - ad - bc + (d

=> ad +b = ac + bd - (a -b)(c - d)

Therefore , by computing three products a . c
,
b . d and (a-b) . (c -d) recursively

we can compute x.y

Recursive calls might need to do some additional work now
,

e .g .,
subtraction

but that is also easy to do

Overall
,

our recurrence now becomes THH) = 3 TIN2) + O(n)

Redrawing the recursion tree
,
each node now has only 3 children and number

of levels is still logh since problem size goes down by half each time .

-> Total work at this level m
1

- -
- 317

7/2 4/2 n/2 Z

1) - i

4/4 n/4 M/4 -> ⑫
:

Level 2
- (3)

⑤

Thus
,

total amount of work = n = n . 0)(z182)

Using the identity a lo802 = e

In a (i) coa

Those T(h) = 0 (n .
ng2(2)) = 0(470"") Significantly subquadratic !

We are not multiplying all pairs of digits anymore

practice it is also faster than lattice-based multiplication , if n so

But one can improve it further by dividing number into more pieces and combining
those with fewer steps

Eventually, this leads to O(n . logn) algorithm from 2019 based on the Fast

Forrier Transform which we are going to see next time

#NextLecture Fast Forrier Transform

⑤

