Team	Won-Lost	Left	NYY	BAL	BOS	TOR	DET
New York Yankees	75 ⁻ 59	28		3	8	7	3
Baltimore Orioles	71-63	28	3		2	7	4
Boston Red Sox	69-66	27	8	2		0	0
Toronto Blue Jays	63-72	27	7	7	0		0
Detroit Tigers	49-86	27	3	4	0	0	

49-177=76

Inpuz: Wins[2,0]

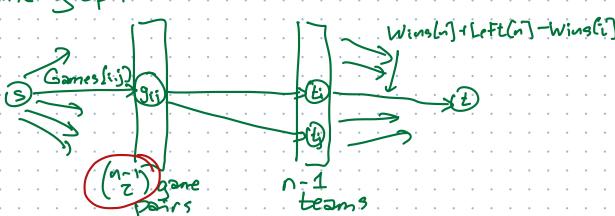
- past wins

Games [1..n, 1..n]

- Future games

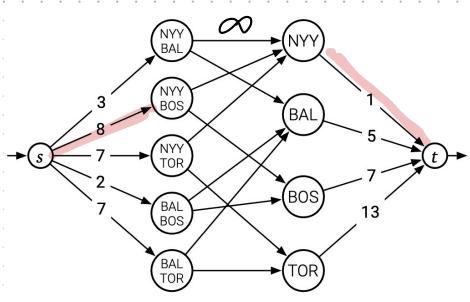
Output: True : F team in could end scasson in 1st (maybe tied)

False of


Left[i] = Z Games(ij]

Assume tom u -ins all Leftlinggames

wing seasion


every team i wins Wins[n]+Left[n]-Wins[i]
Future games

Build graph

We want to assign a winner to every game s.t....

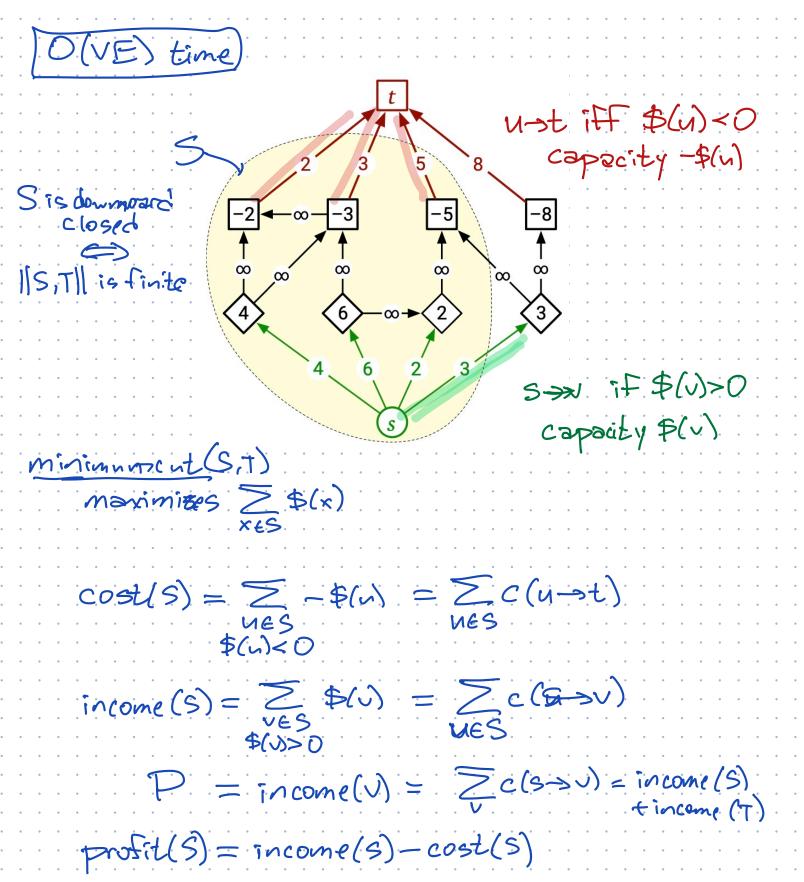
Team	Won-Lost	Left	NYY	BAL	BOS	TOR	DET
New York Yankees	75-59	28		3	8	7	3
Baltimore Orioles	71-63	28	3		2	7	4
Boston Red Sox	69-66	27	8	2		0	0
Toronto Blue Jays	63-72	27	7	7	0		0
Detroit Tigers	49-86	27	3	4	0	0	

Thm:

Team in can win season (=)
There is a flow in G that saturates
every edge ont of S.

Each represting one game

Cap ti >t => no team overtakes team n


Every game played => all sign; are sat

Teamy won => no edge to the overtions

Algo: bild G, compute max flow, check if all edges sig saturated $O(VE) = O(n^2, n^2) = O(n^4) \text{ time}$

Project selection / Open-pit mining
Input: n projects in a dag u->v neans u depends on v v is a preray for u u can't start until vends
\$(v) profit (\$(v)<0 means cost \$(v))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Outputi Subset S of projects — "downward closed" (UES U=VEE) — Max Z \$(v)
Partition V into S - selected
T - turned down P=\(\sum_{\infty} \psi(\v)\)

 $P = \sum_{v \in V} \$(v)$ $v \in V$ $\$(v) \ge 0$ min imize $p - \sum_{v \in S} \$(v)$ $v \in S$ $v \in S$

119,711 = P-profit (s)

||SiT|| = income(T) + cost(s)

Minimum-cost Flous 55.34F £7 \$6 \$7 \$5 Imput; graph G=(V,E)
edges have capacity C(e)
lower bound l(e) >0 demand <0 supply vertices have balances b(v) edge has cost \$(e) Output: "Flow +: $\sum_{u \in \mathcal{U}} f(u \Rightarrow v) + b(v) = \sum_{u \in \mathcal{U}} f(u \Rightarrow v)$ $\lim_{u \to v} f(u \Rightarrow v) \cdot f(u \Rightarrow v)$ $\lim_{u \to v} f(u \Rightarrow v) \cdot f(u \Rightarrow v)$ l €u →) ≤ f(u → v) Avin S C given E $\frac{C=\infty}{l=0} \Rightarrow = -1$ 57(1) 57(1) 73(1) 15 73 12 12 12 71 13 12 12