VOTE iF you can Encourage others to vote if you can't HWS out later today, due next The Office hours -> basement Applications of maximum How - Bipatite max matching Griven bipartite $G = (L \sqcup R, E)$ Find max # edges s.t. each verter touches at most one Alg: odd s,t Cap 1 odd s->li direct $l_i \rightarrow r_j$ cap \sim cap I Ford-Fulkerson Find max flow $D(E \cdot | F^*|)$ integer $= O(E \cdot V)$ return M= Elir; | F* (li - ri)=15 Exam scheduling We need to schedule exams for Num[i]= # students toking class i ezch used <10 times - Cap[j] = # students fit in room j c classes t available times r available rooms parailable proctors -Avai)[k,l] = True Each proctor iff proctor k can be used = 5 times is available at timed We need to choose tuples (class, time, room, proclar) For each exam.

(1) > classes ~ rooms times = proctors = 3) classes rooms times proctors all Num < Cap 211 Avall Compute mox integer From in G. Decompose From into paths Each pette s-> class->room - time >proc->t describes anexan >*1 < C report FAIL IF IF* I< C report FAIL 'Tuple selection' Layers = resources? A Éveter copositirs? L'which edges in each layer? capacities? >paths = selected types Max Flow

Disjoint Path Covers Given 2 dag G=(V,E) Find a collection of simple paths s,t. each vertex lies on exactly one path min # paths Assign successors to as many Vertices as possible 5-3U U-7V V can be succ. of in iff u-sv EE vis not succ of anyother node # paths = # nodes w/o succ's [last nodes in paths] = V - # nodes -its succes min #poths = max # succs. Roduce to bipartite matching ULWREE C) U-JWEE $\mathbb{Z}^{\mathbb{Z}}$

path cover = matching & Finding max in G in G matching
O(V'E') = O(VE) time
Fake prots
Array C[1] of classes
C(i) start) times C(i) and
Array The 1 ml - transit times
T(j,k) = time to walk from
Hire 25 fem prots 25 possible
Reduce to downt path come
$G = LV_{1}E^{3}$
V=nclasses
$\overline{E} = \widehat{\mathcal{E}}_{i} \rightarrow j \left[C[i] end \in T[G[i] \cdot loc, C(j) \cdot loc] \leq C[j] \cdot starc \right]$
This is a dag!
Path = vable chedule tar one pros
1/15j Foth Cover = # profs # paths = # profs
$O(VE) = O(n \cdot n^2) = O(n^3)$ time