
LECTURE (October 21st)

Maximum Flows & Minimum Cuts

Today we are going to look at flows , which might be a more familiar territory

Given a graph with some data associated to it
,
we want to compute some structure

within that graph

You might have seen related examples in previous courses Like CS22S
,
where you saw

minimum spanning trees & Dijkstra's algorithm ,
CS374 Where you saw all pairs shortest

path algorithm .
Those structures that you are computing- shortest path , minimum

spanning tree , etc. - are subgraphs of your input graph

# particular, you want to pick out a subgraph of your graph that satisfy some
optimality properties

Today, we are going to look at other kinds of optimal structure

Before we look at the definition , let us take a detour into history of the problem

This is a map of Eastern Europe after the second world war when cold war was looming

The circles represent cities & the labels are just identifier
The numbers on the box between two cities represent the number of trains that

go between the cities daily, think of it as the capacity of the rail line

①



The numbers outside the boxes and the arrow represents a schedule to use

some sort of material which is mined at the box labeled orijoins

So
,
we want to ship material from Moscow to East Berlin

Instead of using the entire capacity , we can send fewer trains on a

single track

I you look at any city that is not Moscow or East Berlin
,
then you will

notice that the amount of stuff going into the city is the same as the

amount of stuff going out , since it does not make sense to have extra

stuff flowing into intermediate city and by definition the material is only
produced at the origin , so it does not make sense for more stuff to leave
the city then what came in

This is an example of theMaximumflow problem

The input is a directed graph with two special vertices -source and sink

flow on the edge

↑ pacity

· What is the value

of this flow ?

· Is this a maximum flow ?

Each edge has a number associated to it called the capacity and you want
to compute a second number for every edge called the flow value that

satisfies the conservation constraint at all intermediate vertices
,
i
. e.,the flow

coming in equals the flow coming out

Maximum Flow Problem Given G = (V , E) directed

capacity function c : E- IR3
,
0

two vertices sources & target +

#ant Flow which is a function f : E + IR
>, 0

satisfying-
· Any function satisfying conservation= &fluer) = &f(u+ w) fu +s, t
constraints It is called a flow

· Any flow satisfying capacity constraints & is X
& 0 < fle) = (e)

called feasible ⑤ Value of flow (f) = @f(s+w) - [f(u+)

· Note that by conservation
Y

We want the flow with the maximum value
Ifl = Ef(u++) -Ef(t - w)

②



One useful analogy is to think of the edges as pipes and the capacity as
the capacity of the pipe before it explodes

· What is the value of this flow ?

· Is this a maximum flow ?

We will see shortly why this is not a maximum flowa how to get to a
maximum flow from here

Before we do that
,
let's introduce the evil twin of the maximum flow problem

called the minimum cut problem

This map was made by RAND corporation in the 50s - a lot of algorithm research
originated there in the 1950s

This map was classified until 1889 , when an optimization researcher Lex Schriver
wrote to the US government to declassify it

The bottleneck is the smallest cost of destroying all the rail lines to disconnect

Moscow from East Berlin-cost equals the capacity of the rail line
③



This is called the minimum cut problem. The input is exactly the same with
a source & target t but now we are trying to separate the source &
target , i.e ., divide the vertices in two parts where one contains s &

the other contains t
.
Such a partition is called a cut.

& Partition V= SrT where set & teT & St = o

Capacity of a cut (s
,T)l = S cu-v)

YES

NET
4 We only care about

flow from s to t
not the other way
around

What is the capacity

! of the cut (SUT) ?

This edge is irrelevant

We want the cut with the smallest capacity , i.e., the smallest cost
to disconnects from t

The max-flow min-cut theorem ,
whose proof we will see in today's

Lecture says that in a given graph

Max-flow value = Min-cut capacity

Max-flow Min-cut Theorem

max If) = min IISTflowf

The proof of this theorem will also give us an algorithm to compute
both the maximum flow o the minimum cut

Let's see the easy direction of the proof first max /f) - min ICS
,Tl)

Picky feasible flow f and any cut (s, i)

value of is If) = [f(s+ w) - &flues

④



Since all vertices except sit have the same of flow going in as

coming out , we have

#Usit Ef + w) - Ef(u+ u) = 0

Thus
, adding it to the quantity above

Hfl = @fls+w) -&fluts)

+ Es(f(v + w) -Sf(u + v)U

① =&flutu-f
Consider an edge x-y , St . both y &y are in

Note that f(x +y) appears in the first sum When v = x & W=Y

& - f(x+ y) appears in the second sum when u = X &

V=y

= [2 fir +w) - 22 flutu)
Ves wes Ves uES

= - [f(u + w) - 2S flutr)
VEs wET Ves UET

- - flow from T to S
flow from S to T 30

= E2 f(u + w) = ((s
,
+))

ves weig

-
> c(u+ w]

Therefore , Ifl : ICS,TI for any flow f & cut SUT

=> max If) < min 1(S,T)/

We have used all the properties of the flow
- value of the flow
- conservation
- non-negativity
- feasibility

But one of the thing this implies that if we find a flow
& a cut that have the same value

,
then the flow must be

a maximum flow & cut must be the minimum cut and all

the inequalities must be light ⑤



If Ifl = Is ,Tel ,
then

· f is a max-flow E
· Sut is a min-cut

· f(u +u) = c(u+r) for all UES ,
rET

· f(u+) = 0 for all UET
,
UES

Let's see the proof of the other direction

max 151 > min KS
,T).

The proof will be easier if we assume there is at most one edge
between any two vertices

- this is easy to handle[Why ?)

Pick your favorite flow f ,
we define a new flow problem using

residual capacities & residual graphs

#
These capture how much of the

capacity is not being used

Residual graph

Define residual capacity for flow f by

(y(u+ r) = c(u+u) - f(u+ v) if u+VEE

f(u + u) if v + UEEE
O O

Residual capacities are always non-negative [Why ?

↑↳
There is still capacity left on this edge ⑥



->
called an augmenting path

Case 1 : There is a path from s to t intheresidual graph
-

Residual

Graph

Consider any augmenting path , the maximum flow we can

push through the path is the min residual capacity of
any edge on the path

Let Chin = min-capacity of edges along any path p from to t

If we post Cin Units of flow along that path
we get a new flow f'st If = If'l + Gin (Why ? ]

& f' is feasible [Why ?]

=> f is of a max flow !
>

Case 2 There is no augmenting path from tot in the residual graph of-

-⑦-

S T

# No augmenting path- from s to + !

Let S = all vertices reachable from inGf
T = XIS

For every vertex yes ,ve
T

if n+ U EE ,
then fluev) = cu+ O)

if v + U -E
,
then flutv) = o

⑰



Recall
,
what we saw earlier

If Ifl = Is ,Tel ,
then

· f is a max-flow E
· Sut is a min-cut

· f(utu) = clu+r) for all UES ,
NET

· f(u+) = 0 for all UET
,
UES

Thus
, f is a max-flow & (S, T) is a min-cut

This algorithm was discovered by Ford-Fulkerson in 1952

Augmenting Paths Algorithm

Initialize f+ O

Gf G

While there is a path p from to + in Of
push flow along p
rebuildOf

Return f

Runtime of this algorithm ? NEXT LECTURE

⑧


