
LECTURE 16 (October 17th)

Dimensionality Reduction/Sketching

How do we deal with data in high dimensions ?

We often visualize data and algorithms in 1
,
2 or 3 dimensions

,
e .g. a graph or 3Dplot

But high dimensional space is not like low dimensional space ,
as we will see in the first

part of this lecture ,
so such visualization is not very informative

In the second part of the Lecture ,
we are going to ignore our own advice and

look at sketching , aka , dimensionality reduction techniques

High-dimensional Geometry

Recall that inner product of two rectors ina dimensions

=
To

= IIxIIz . Iy1Iz · cosO -X

& How many mutually orthogonal unit vectors X... ... Xt can we find in a dimensions ?
-

This means (x[X;) = 0 - i
, je(t)

#swer : We can find a such vectors

& How manyanearly orthogonal
unit vectors X ...

-. Xt can we find in a dimensions ?

This means IX: "X; 1 0 . 01 FijeC] or the rectors are far apart

* There can be 28(4) such vectors. In general , if we want inner product to be
atmost E

,
then there can be 28122d) such vectors.

seof dimensionality suppose we want to find nearest neighbors in high dimensions .

We typically need an exponential amount of data before
we see close points if our data is truly random.

①



The existence of lower dimensional structure in our data is

often the only reason we can hope to learn

Let's look at another example in high-dimensional geometry

Consider the unit ball in a dimensions

E
#

12/1))

·
What fraction of volume of By falls in the E-shell

around the boundary ?

In 2-or 3-dimension this is small ,
O(E) fraction

I
& >

- O(2d)
But in d-dimension

,
this fraction almost 1-2

What fraction of volome is close to the equator ?

2 IIIIIIIIIIIIIII.
# 2 or 3 dimension

, this is small
- O(Ed)

But in d-dimension
,
this fraction is 1-2

ins Most of the volume lives in the shaded region
I

IIIIIIII ((((((II High dimensional ball looks nothing like the 2D-ballI
Sketching or Dimensionality Reduction

Despite the fact that low dimensional space behaves nothing like high-dimensional
space ,

we can still levere its wierdness to our advantage

In particular , suppose we have data ..... XNEIR
&

We want to find some way of making it low-dimensional , say in
IR"

where nd

:-
②



This is some sort of data compression

Of course ,
we should not expect lossless data compression

but we would also like to preserve geometry of our data

For us
,
it will be pairwise distances between the points

that is approximately preserved

How is this useful ? Let's look at an example from computational
geometry ,

where such a thing is very useful

Consider the K-means clustering problem

#pXz . .... Xped and an integer k >1

put Find y .....Y,
-Ra such that

min 1) xi-yil is minimized
i=1jE[k)

Basically , we
want to partition the input into K-clusters and

↓ 's are the centers of these
clusters & We want to minimize

e the sum of distances of points
from their closest center

#ote : The fact that yo's are the centers

of the closter requires a proof
which we will not cover here

In particular ,
this problem only looks at pairwise distances between

points ,
thus if we have a way of reducing the dimension while

approximately preserving the distances ,
we can solve approximate

↓means faster in low dimensions

Similarly for other problems like nearest neighbour search and so on

Johnson-Lindenstrauss Lenma

This gives a way : data x
..... XER

"
- R "wherend

In particular, n = O(log N) where N is the number of data points
so

,
wejet an exponential improvement

⑤



And the way to embed data is via a linear map or linear transformation,
in other words a matrix

-

↑
12 A I = m↓

↓ ↳ Low-dimensional data
Compression or d

Sketching Matrix ↓
↳ d-dimensional data

#heovem(Johnson-Lindenstrauss84)

For all points X.....XNEIRA ,
7n = clog N and a matrix A -

***

such that

0 ·49 1x : -X; / = 11 Axi-Ax; 1 = 1 . 01 /xi-Xi1) Vije[N]

How do we find such an A ? Just picking a matrix randomly world work
with high probability

To prove this , we need some more probability tools so we take a small detour

Gaussian or Normal Distribution

We will work with continuous probability distributions for a bit ,
in particular

distributions on the real line R or ind-dimensional real space IR.

!

continuous distributions have a probability density function (p .

d
.f. ! which tells

us the weight the distribution gives to a particular region

# in 1-dimension piR + R
> 0

and probability of an interval I
=(p(x)d

Gaussian distribution is one of the most useful distributions
The pof of 1-dimensional standard Gaussian is xP(x)

p(x)=*The probability of an interval of size dx is p(x)dy



The mean is M = (6) = jxp()dx analors to the discrete case

I

= O [x .P(X=X]

Another quantity that is important is the variance

62 = E((G --(2) = (x-p(x)dx = 1

IR

The standard 1-D Gaussian or Normal distribution is denoted by N10 ,
11

One can have a Garsiantmean n & variance o denoted NCM,
with the palfor

C

Properties of the Gaussian Distribution

The normal distribution has a lot of unique properties

#FilBounds

For example , suppose we tossn independent coins

X, . .
.. .. X [El5 ,

so[Xi =+] =P[xi = -1] =Ye

Let X= Xi .

Then
, E[X]=

And Chernoff bounds imply that -> e
i

so ,
X = E[X]

,
since the decay is superexponential

But in fact something more is true
, as in + d

* -> N(0 , 7) ,
so the distribution starts to
look like a Gaussian

.......

I
The tail inequality of the form I/1GK, t] Se is called a

Gaussian tail bound because it holds when G is N(O ,1)

(Proof : calculus] ⑤



② sum and scaling

Let G
,
be N (M

,
6

,
2) and O be N(M

,
623)

Then
. G + G is N(l

,
+Me ,

6
,

2

+ 02) - Sum of Gaussians is

a Gaussian with

#ote: This also holds for sum of many Gaussians different mean & variance

Similarly , if G is N/M
, 67

Then
,
as is N(Md ,

2) => variance scales by a

factor of 12 a mean

by a factor of a

Multivariate Gaussian Distribution

A standard Gaussian distribution in d-dimensions is a rector

G = (68 ... -. ,d) where each coordinate Gi
is an independent NCO. 1)

random variable

The pdf of this is given by

P(X 1 . . . . Xd) = p(x) --- - p(xd)
-) pdf of 1-dimensional Gaussian

= (*) .... (e
+
)

-
Where X = (x

, .
. .- Xd) ER

%

Pictorially , the 2-dimensional pof looks like

A

⑥



One basic property of a high-dimensional Gaussian is the
thin shell phenomenan

If we sample many points from a d-dimensional Gaussian

most of them are close to the surface of a Id-radius ball
even though the pdf has a higher value around 0

.

This is similar to the fact mentioned before that most of the
volume of the unit ball is near its surface.

*
x

+
Y

+ Concretely ,
the thin shell theorem says that

X · EX for a d-dimensional standard Gaussian G = (G, . . .. Gd)
↓

F
X

Y
X X

-c
IP(099/a = 11011 = 1 .01(a) = 1 - e

for some constant

Proof of Johnson-Lindenstrauss Lemma

We now have all the tools to prove the Johnson-Lindenstrass Lemma .

#heovem(Johnson-Lindenstrauss84)

For all points X.....XNEIRA ,
7n = clog N and a matrix A -

***

such that

0 ·49 1x : -X; / = 11 Axi-Ax; 1 = 1 . 01 /xi-Xi1) Vije[N]

#of Picking A = G to be a random Gaussian matrix will work with high probability
F

# Each entry of the matrix is an independent
N(0 , 1) Gaussian

,
i. e

., Gij ~ N(0 , 1)

nxd Gaussian
Matrix

Let's first understand what this matrix does to a fixed vector z ERI

FACT #ztR4
,
Izll = 1 (i

.
e
.,

z is a unit rector)

& is a n dimensional standard Gaussian
,
ie,

Matrix-vector each coordinate (Gz); is .
N(0

,
1) & independent

product ⑦



We have (ozli= f)
= product of it row of a

and Z

al
-> scalar

=j
&

Each Gij is independent NCO ,1)

Each term Gijzj is N(O
, zj2)

sum of all terms is N(0
,
z + z22 + ... + zd)

= N(o ,
llzIR) = N(0

, 1) since z is a

unit rector

All coordinates of G2 are also independent since each
row of G is independent

We want to prove all pairwise distances are approximately preserved
So

,
letvs pick a pair of points

xix Consider z=l

-

-

Then
,
Gz is standard n-dimensional Gaussian

and by Thin shell theorem

# [0 . 995==
=> /0 .991xi-vill = /l )) =1I
I
This is our matrix A

Thos
,
the probability that the event llAxi-Axill * 10 ·9911X: -Xi1) ,

1 .01xi-X; 11),
call it Eij holds for a given pair (i, j) is e-c

What is the probability that there is some pair (i ,j) where Eij holds ?

# (t(ii) - (2) : Eij]< Ej] = N . e-c by Union bound

So
,
ifh = clogN for a large enough c the prob is atmosto

Thus
,

a random matrix works with high probability ⑳


