
Lecture 15 (October 19th)

StreamingAlgorithms

In today's lecture ,
we will look at streaming algorithms where randomness

is often useful for designing algorithms

A data stream is an extremely long sequence of items from a universe that can only
be read once in order

9 , %2 , 93,------ , am where each and 2 where 21 is a set

of n items

E.g. Packets passing through a network router

sequence of goole searches
N stock exchange traces

Standard algorithms are not suitable for computation because there is simply too much
data to store and it arrives too quickly for complex computations

Ideally ,
one wants to compute properties of data stream in low memory /space (and time

poly (log m , logn)

↑ L
Needed to index where- Needed to remember

We are in the stream the current item

sometimes
,

one can find algorithms that do not depend on the length of the stream in

In fact
, streaming algorithms are sometimes also used for non-streaming data

#. To process data in massive datacenters ,
where data is stored on hard disks

which are slow to read/write and one wants a low memory algorithm since

we want to store the data relevant for the computation in the RAM

SomeExamples

Each item is a Ollogn)- bit number#Editionsoel Sum of m numbers is at most 22 .
zoclognas

so
,

we only need to store Ollogm + lon) bits

& Max/Min Ollon) bits

⑤ Median Exact median requires &(n) space !

①



In-class Exercise# Suppose the stream is a ...---an where each aie [n +1]

and distinct

Find the missing value in Ollogn) space
distinct
-

& Given a stream an.... am , sample a uniformly random element from
all the elements seen this far

,

with only oflogn + logm) space

solution # Missing value=

② Let sal

When a; arrives , with probability ,
set sai

Why is s uniformly distributed ?

#[s = a) = 7

+ jci : P(s = a
; )

= (1 - &)· *

#usExercise Given a stream an.... am , sample a uniformly random set of s elements from
all the elements seen this far .With Os(logn + logm)) space

Store = (a, . . . . . 9s) + B is a set of s elements

For is so with probability & replace by with a
& J is chosen uniformly
at random from [s]

Why does this give a uniformly random sample ?
Consider any set b of s elements

We want to say that #(B =b)=)

Supposedib ,
then (B =b) =

Et(

=! C
-! =

(i-1) - (S- 1)

suppose ait b. then (B =b] =(
-

choices for T

element that - -↳is replaced by - a-

Cli

②



Distinct Element Estimation

Given a stream (9
1, az , ..... am) where each a 1 with 1411

count the number of distinct elements in the stream ,
denotedFo

#GiveAlgorithms# Store an indicator rector of which elements of 4 we have seen

#001107470

& store a set of all the elements we receive
.

Space 0(1 · 10g 17) bits

Can we design a poly(logm , logn) space algorithm ?

It turns out that both randomized and approximation are necessary to solve this problem

· Every deterministic algorithm requires 1(n) bits ,
even for 1 . 1 approximation

· Every randomized algorithm that computes to exactly requires ((m) bits

We will only prove a lower bound for exact deterministic algorithms here .

#a Exactly counting number of distinct elements requires f(m) space (assuming 14 2m).

#of Suppose the first m-1 elements are distinct and algorithm uses s bits of memory
There are (12) choices of inprets for the first (m-1) elementa

AndIs choices for memory configurations

If (141) > 25
,
then there must be two sets that lead to

11 -1

the same memory configuration. Let the two sets be So T

where
S T
Y d

% °
y

*

The algorithm must err in one of the two input streams since the memory
configuration is the same and

· Sox3 + # distinct elements = #- 1 < Try3
·Sudy3 + #distinct elements = m = To EX3

Thus
.
25 (2) s = M(m) B

③



Approximately counting # Distinct Elements with Randomized Algorithms

Goal Given a stream (9, .... an design a randomized algorithm that outputs
a number D S.t .

#[DE ((1 -3) Fo , (1+2) Fo]] > 1 - S

[Kane
,
Nelson

,Woodruff10] gave an algorithm with space 0)(2+ 10gm) · 10)
#
This algorithm is best possible in terms of space complexity
L

Beyond the scope of this course.

Today, we will see a simple algorithm with space complexityOn lol
The algorithm is due to (Chakraborty - Vinodchandran -Meel '23]

The basic idea behind the algorithm is the following :

· Suppose we randomly sample a set X where each distinct element

in the stream is included with probability p independently .

1 23423547

Then /NX1] = p .Fo # = Fo ↓ ↓ ↓ ↓ ↓o ↓

each included in X

independently with probability P
Furthermore. by Chernoff bounds

#F, SpFo) -
ELIXI

= e

- 3-pFo

=( - Fo)Eto
Thus. we can just randomly sample a set X as above , divide its size
by p and hope to get the value of Fo , as long as p is not too small

↳ Want p= lo
so
,
that e-EPFo < &

There are only two problems here : 4177
& IE(size] = 10 log

Sampling How night one sample such a set ?

Rate of The Chernoff bound calculation suggested that we don't want p to
pling be too small

.

But we don't want p to be too large either since we want

X to have small size
,
so we can store it with small space.

Ideally , we would want pe ,
so that I 1

,
but we don't

know Fo !!
④



Let's see how to resolve these problems one by one :

Sampling Let the current set be X and the next element be a

Remove a; from X if it occurs
Then

,
add ai to X with probability p

claim Let the distinct elements seen in the stream (11 . . . . .. 4) be Y
Then

,
X is a random subset obtained by sampling each element

o Y with probability p independently .

roof Exercise

#Rateof sampling The key idea is to try all rates PK = 2-" for different values of K

Maintain X
, sampled at rate 2" from distinct elements

-

Po=1 Xo contains all distinct elements

P= *z

↓·P== 7/4 " !
-kmay

As long as the set Xkmax has not too small a size
,
we can use any of

these sets to estimate For by using the associated rate

But storing each set may still require a lot of space

We only need one such set however with the associated rate&

In particular , we keep a threshold of our bucket of size0 10

If the bucket exceeds this size we throw away that bucket & more
to the next onea keep track of the value of p

Overall
,
our algorithm is the following

⑤



Estimate Fo (1
, .
. ... am

pt1 , XX0
For i to 1 to 14

X = X([Pi3 & samplefrom distinct elementiswith probability p . X = XrEai3

ifIX1 = 100 log(E) , thens

throw away each element of X with probability E subsample half the elements] & decrease the rate
p = Plz

Output

#al The probability that pX) at any point during the ron of the algoritha

is atmost 8.

=> This implies that the size of the set at the end is large enough , so that
Chernoff bounds imply that we output a (12) approximation of Fo

And also space complexity is O(lon . 10 10(

#   ofof Lemina Suppose the probability decreases from 22 to 2 whereIt
This can only happen when the subsampled set X at this rate
has reached maximum bucket size.

However
,
E(X) = 10log) .=

Thus
, by Chernoff bounds

# (IX1,01(
By union bound over all in iterations , the probability that
p decreases below the above threshold is at most 8

⑥


