
LECTURE 12 (October 3rd)

TailInequalities

RECAP Last time we showed randomized binary search trees /treaps satisfy

E [depth(r)] = Ollogn) nodesa

So
,
search & other operations take Ollogn) expected time

This also implied that randomized quicksort urns in OChlogn) expected time

Today we are going to prove that these statements hold with high probability

TInequates suppose the distribution of our runtime looks like

·

Iis is called the fail of thedistribution

time
[time] 10 1 Log 1

znlogn
We want to findIf run time (conlogn] for example

For example , if the tail decays like a Gaussian
,
then it decays

super exponential & this probability would be small

But the tail behavior depends on the distribution which will not
be Gaussian for our applications

What we are going to rely on is the fact that our random

variables can be written as

X= X. + Xz + ....

And what we want to bound
, for instance

4[X, 9 . E(X]] =?

①



Amessage If the random variables Xi's are independent ,
we get

a very sharp tail inequality

In general , the more independent Xi's are the better tail bound
we obtain

Markov's Inequality # Z is a non-negative ter random variable
,
then

P(zz]-Eu
mean or expected value

Dark The inequality holds for non-integer

n
..

random variables as well

11

# (2) z+ 1] - P(z(z)
= R(z=z]

2 Z

↑Area orectangles
Total Area= C(Zz]

= Siz . R(z =z] = (E]
Z-

Area of horizontal rectangle

We claim that TotalArearea
of red shaded rectangle↓

ECETz] *zi]EE] < z .PLEZ]

Therefore ,
we obtain [E] z . P[ZTz] for any z

So, [ZC.(E]] =

Recall that for quicksort , ECruntime] -
> 47 logm

So
, #[run time <Onlogn) = E

& IP [runtime) in login)> 4
12

So
,

we only get weak tail bounds ,

but that's understandable because

we haven't made any assumptions on the random variable apart from

non-negativity

②



To get stronger tail bounds ,
we need more assumptions ,

e .g. independence

Recall that X & Y are independent random variables if

# [X = x +Y =y) = P(X=x] ((y=y]

or equivalently ,
(X =x 1Y=y] = P(X =X]

This also implies thatCXY] = 1E[X] · ECX]

& that f(x) & f(x) are also independent for any function f

Similarly ,
X . . . .. Yo are fully (or mutually) independent if

#[X = X
,,
Xz=x

, ...., Xn =Xn)= Xi =xi)

# weaker notion of independence that is sometimes useful for applications
is K-wise independence

X... ..n are k-wise independent if every subset of size k is fully
independent

Example Suppose X
., Xz-20 , 13 are independent random bits 1P(X =

= 0)= [X
,
= 1) = '

& same for X2
Let Xz = X, X2

Then
,
(X

,, Xc / X3) are 2-wise (also called pairwise) independent

Pairwise independence implies a stronger tail bound ,

In particular ,
let X= X : where Xie 50 , 13 , E[Xi) = /Xi=1) =pi

0 M = 1[X]=
then

,
we have the following stronger tail bound

Chebyshev's Inequality If X , . .
. ...Xn are pairwise independence ,

then

# ((X-uRct] =1)
This follows from Markor's inequality- LE((X-us] =e
applied to the non-negative random follows from

variable (X-u) pairwise independence
③



I of Let Y:= Xi - pi 8 Y= =Xi- : = X-u

Note that lE[Yil = ECY7 = 0

E ((X - u)] = E(y2) = &E[YiYi]
Second moment of-I =EMI)EXT

(by pairwise
independence)

=+]
= O

↳
viiiwithProbS

= Spill-pi)2 + (1-pi)p :
2

= S[Pi(i + piz - 2pi) + pic-pi3]

= (pi +/ - 2pi2 +pi -)]
= Elpi-pi] = Spi = e is

What does this inequality say about1P(X, (1+/M] = 1((X-ul,(sul]

Eu

For quicksort .
u= 4nlog1 ,

Let 6 =E ,
then we get that

#[runtimeSulgon)
Thus

, if the random variables were pairwise independence ,
Pontime (Snlogn]

-> 0 as M ->

This is not completely satisfactory ,
we would like to have even sharper tail bounds

And also random variables appearing in the quicksort analysis are not pairwise -

independence (without being more careful) so we can't use this directly

But for many applications ,
this bound is good enough

There is also a bound in the other direction #(X = (1-S(u)=
⑨



What if everything is fully independent ? Then , we have the following exponential moment bound

Exponential Moment Inequality If X
. . . .. Xn are fully independent ,

then

1/2x7-evo in general ,
ElaX] se-1M for any an-

If you rely on misguided intuition, you might think that

1E(2X] = 2EMX) + This is not true

The above is not true in general , but if X .
... In are independent , something close

is true as shown by the exponential moment inequality

Proof (of Exponential Moment Inequality) can be found in the lecture notes

Consequences of the Exponential Moment Inequality

PEX,2E[X]] - Ifu th

this decays exponentially

#? P(x <2[X]] = 1/2
*

< 22EX]]
Since (e) < 1

Markor's inequality&EX]
exponential momentfor 2

*

inequality

If we do further manipulations (which can be found in the lecture notes) , we get

[
# (x > (H+d)u] ->( -- Su if s20 , 1)

Similar inequality holds for X-(1-Sle

- mean

Main message # (X > little above its mean] e

For example .
#/X * 2M] = eth > e-logn for quicksort

Let's see how to use the exponential tail bounds ,
which are also called

Chernoff bounds ,
to analyze treaps

⑤



Recall that in the last lecture
,

we showed that if we insert keys into a treap
with random priorities ,

then

E(depth (k)]= ) is a proper ancestor of
Let X = depth (k) ,

then note that X= Xi

where Xi = 27 ifiise
Tus

,
the depth can be written as sum of indicator random variables

We now show the following claim :

For any node 1 ,
X

.. Xz ..
-Y are mutually independent

and XKH ... ... Yn are mutually independent

Proof Follows from a careful induction which shows that

#[X ,X . ... XRF* ) = P(X
,

= X 1) · P [XEX2] ....[XEY-

1)

& similarly for XK+, . . - . Yn

(can be found in the Lecture notes)

Note The random variables in the two different groups may be dependent
For example ,

X
=

& X may be dependent if 1 < K < 7

So
,

we can not use Chernoff bounds directly

so
,
let us write X= X + X+
u un

= Xck In * k
alwayso since k is never

a proper ancestor of k

We showed last time that [X] = Plog 1

So
, IP(X Siogn) = P/XK ? Slogh

~ Ixi slogn ISince XC, slogn ↓
=> XK Slogn

7
or X< k > 510517 ⑥



= IP(X(k * Slogn) + P(X-) Slogn)
Union boundN ↑ ↑

#(A vB]= [A] + P(B) Sum of mutually Sum of mutually
independent random independent random
variables with variables with

E[X(k) = logn lE(Xc] - 'On

- c (blogn)
Applying Chernoff bounds ,

we get both are at most C for some
constant C

careful computations of the constant give us a bound ofs

Thus. #P (depth (12) > 510gn] =

By union bound over all n nodes
,

we also get that

# [depth (treap) < slogn)

-# (depthSnordet
Soa

- 1 .= To as n t

Thus
,
with high probability ,

maximum depth is Ollogn)
and all treap operations take OClogn) time

#


