
LECTURE 11 (October 24)

Randomized Binary Search Trees o Treaps

A binary search trees is a binary tree where each nocle is labeled with a key and key at

any node is larger than the left subtree and smaller than the right subtree

For example , if we use letters for keys ,
here is a binary search tree

⑭

T
End To find a key in a binary search tree

,
we just do binary search

#sert. To insert we just do a binary search
,
the search fails but whatever Leaf

we ended the search with , we insert the new node as a child of that leaf

For example , insert T in the binary tree above gives

S
T

Ideally, binary search trees should be balanced , and if our tree is balanced
,
the time

to search takes O(logn) time ,
since the depth of every node is Ollogn)

Where n = # nodes in the tree

The problem is that not every binary tree is balanced , for instance , the tree could

have depth 11 where all nodes are to the right. In this case , search takes On)
time

Moreover
,
we would like the tree to not be static ,

but instead we would like to

insert/delete elements or do other operations.

①



Some examples of operations we would want

· Find(x) - Find a key x in the tree

·

Pred-Find the predecessor or succesor if the search is unsuccessfa

· Insert (x) or Delete (x) - Insert or delete

· split(x) - Split a tree into two trees , one where all keys are X and

other where all keys are X .

· Join(x) - Reverse of the split operation

And ideally , what we would want is that all of these operations happen in OClog-n) time

There are ways of doing this e .g . AVL or Red-Black trees
,
but these are quite complicated

In fact , there was a bug in theC++ library that implemented red-black trees for close to
10 years. There are really subtle things that can happen .

Today, we are going to see a very simple way to do the above that uses randomness.

In fact , once you see the rules , you can implement it yourself fairly easily.

Fraps-introduced by Aragon & Seidel in the gos

The object we will look at is called a treap (= tree + heap) which is both a

binary search tree and a priority heap .

Recall that heap is a data structure where every node has a priority and for a min-hepp
a node with a smaller priority is always an ancestor of a mode with a higher
priority.

For a treap , all the above operations will take O(logn) expected time (or even
O logn) time with high probability)

For a treap , each node has a key (which we will denote by letters A, B, C, D, . ..
and a priority (which we will denote by natural numbers 1

,
2
, 3, ....)

If we only look at the keys , it looks like a binary search tree and if we only
look at the priorities, it looks like a heap

As an example , consider ALGORsFj TzHoMg (priority 1 is smaller)
priority

Assuming all the keyso priorities are distinct , there is exactly one tree
corresponding to it.
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For the example above , the following is the treap

⑰ Item with the smallest priority is the root

& To the left , are all letters less than A

Et To the right , are all letters greater than A
1 By induction hypothesis , each of the
⑬ (key , priority) pairs define a unique tree*
B

⑮ #

Let's see how to insert an element
,
e.g . St Where T= 3 . 14159 .... is the priority

and S is the key

First look at the key and insert it in the search tree.

⑰
&

*
*
B

⑮ #
⑮

But now the priorities are not in the correct order !

To fix the priorities , we use an operation called rotation (same operation is used
in red-black or AVL trees)

·
Rotate !

⑮ ⑪ Rest of the tree

-
remains unchangedY in

OCD time - just

So
,
this can be done

↳
careful pointer
manipulations

③



But one thing to note here is that if u was a child ofr before , it is a
parent of u afterwards. So

, if priority (u) was smaller than priority (v)
we have moved it upwards. This is exactly what we want to fix the

priorities after insertion.

⑰ ⑰
& &

* *
*
B *B

⑮ a t
#

This is still not fixed , so we
rotate again

↓ Rotate
⑰N &

RotateG - *
⑬ ⑮ ⑭

* *
# ⑮ T

Still not correct !

Now all of our priorities are correct !

So
,
to insert we pretend its a binary search tree , insert the node according to its key

and then do rotation. Each rotation fixes the problem at that node but may more it
closer to the root

,
so we keep doing it until all the priorities are correct. Other parts

of the tree are not affected .

Insert (k , p) Create New node (k ,p)
Insert only looking at keys
Bubble up new node using rotations only looking at priorities
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How do we delete ? Just do insertion in reverse order

Make the priority of that node o
Bubble down the node only looking at priorities
(which node moves up is determined by the priority-smaller priority
child moves up
When it becomes a leaf , just remove it

Delete set priority to a
Rotate down (promoting child with smaller priority closer to root)
Remove the leaf

Run time of Insertion/Deletion is determined by depth of the initial/final
inserted leaf

Runtime of search is determined by the depth of the node the search ends on

So
,
For all of these operations , time = O (depth of some node)

Recall
,
that the original motivation was to design a balanced binary search tree

Where we only have keys .
So
,
the priorities can be chosen by the data structure itself

since they are not part of the input.

How do we assign priorities ? Just generate a uniformly random number in10 , 17 for
each node independently . That will be its priority.

The random priorities then determine the structure of the
binary search tree·

Main message If we choose the priorities randomly , then for every node -

I [depth (07] = 0(log-n)

# fact , in the next lecture we will see that IE [Max Cepth (u)] =Ollog 1)
as well

That is
,
the binary search tree is balanced in expectation (or with

high probability even) , and the running time of the above operations
is OClogn) in expectation .

Split/ Join Operations - How do we split/join ?

Suppose we want to split at X.
If x is not in the treap , first insert it.
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-># To split it into

h
Treap

we set the priority of X to-
Bubble it up until it becomes the root

#
And then delete the root

For joining , we just do this backwards in time

The for these operations is also O(depth of some nodel
so this is still Ollogn) time assuming the statement
about expected depth

Let's prove this statement now :

Main message If we choose the priorities randomly , then for every node -

I [depth (07] = 0(log-n)

To simplify notation , we will assume that keys are integers 1 , 2 , 3, ...., h
Also note that, depth (k) = # proper ancestors of K

↳ This means depth of mode whose key is 1

Kyidea Express depth (k) as a sum of indicator random variables

depth (k)=1) Wherei4k] = Et it
i is a propera
ancestor of k

Thrs
, ((depth (k)]= [417]

= [i4k] Since(indicator)=indicator a1)-

=

Event that i is a proper
ancestor of K

⑥



What is the probability that i is a proper ancestor of k ?

If i. [14k] = 0 since i can not be a proper ancestor

Lehima For all <k
,
i is a proper ancestor of iff priority (i) is

the smallest priority among all nodes in Ei, .... k5 i. e.

ink Priority (i) = min [priority (j) /je Si, . . ..33

Now
,
each node gets an independent random priority ,

e
.

g.

Priority0099100....
key

So
, Assuming this lenma is true,

[14m] = 7 since each node gets an independent
random priority , so out of all n
nodes

,
the probability that I has

the smallest priority is

[i +k ]= (if i< K) since there are exactly
k-i + 1 priorities in that

set out of which one has
to be chosen to be the

smallest one & they are
all equally likely

Thus
,
I [dept(k)]=(i + 1)

=/ik]+ 4)

=
~ -

Above lemma symmetric lemma

where we reverse

the roles of : & K

= by settingj = ki+1
& l = i -k+1

= Hi - 1 + Ha -k+1 - 1 = 0(log - n) ⑰



So
,
once we prove the Lemma

,
we are done

.

Proof of Lemma There are five cases to consider based on the root
, keeping

in mind that root has the smallest priority

· Root < -> If the root is smaller than i
,
then ⑳

Both it k are in the right subtree,
so by induction hypothesis , the lemma holds F

· Root = i -> itk and priority (i) is minimum since its the root

· i < Root <K -> In this case , we know priority (i) is not minimum since it

must be the root
.
We also know that

⑳ot So
,
neither is a proper

⑯ ancestor of the other

So
,
in this case ,

i is not a proper ancestor of
K.

i.e . i * K

· Root = -> i * K here as well
,
since K is an ancestor of everythi

· Root 7k - Then both i & K are in the left subtree ⑳t
Lemma follows from induction

hypothesis
*

So
, we have now seen the definition of a treap, how to implement it and a complete
analysis of expected depth .

Since
,
this is a lot simpler , why bother with ArL or red-black trees ?

Because for the latter the constant in O( . ) is smaller, so if efficiency is very
important then you should implement those o treaps are much easier to implement

One last thing to take away is that one can think of treaps in different ways. These
all give equivalent & different ways of defining a treap.

⑧



Definition1 Treap is a binary search tree with random priorities

Definition 2 Treap is a binary search tree obtained by inserting keys in
random order

Assigning random priorities & inserting it in order of priorities
is the same as inserting keys in a random order

Definition 3 Treap is a recursion tree for randomized quicksort

Let's look at an example here : suppose we want to sort

the word ALGORITHM in alphabetical order , we pick a
random pivot say A lusing random priorities/ random order
Recursively sort everything smaller than A & everything greater than A.

⑰ The recursion pattern we get is

& exactly this binary tree where

in the right subproblem, we firstG chose the pivot LO recursed.

⑬ ⑮

*
⑮ #
So
,
what we have seen today is an analysis of randomized

quicksort .

HANDOMQUICKSORT(A) Randomly permute A
For each XEA

Ensert x in binary search tree
Do an in order traversal of binary search tree

The comparisons we do in the above are the same as picking
a random pivot & comparing to others

I (ron time] = [time to insert all n keys] = Oln - logn)
in a treap

So
,
when we are inserting into a treap , we are running quicksort

and realize we are missing something & we go backward in time
& fix it by doing as little work as needed. There are many
applications of this in data structure where we record something
in a recursion tree & go back in time and fix the recursion tree (e.g. git)
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