
For a long time it puzzled me how something so expensive, so leading edge, could be so
useless, and then it occurred to me that a computer is a stupid machine with the ability
to do incredibly smart things, while computer programmers are smart people with the
ability to do incredibly stupid things. They are, in short, a perfect match.

— Bill Bryson, Notes from a Big Country (1999)

Shortly after the “iron curtain” fell in 1990, an American and a Russian, who had both
worked on the development of weapons, met. The American asked: “When you
developed the Bomb, how were you able to perform such an enormous amount of
computing with your weak computers?” The Russian responded: “We used better
algorithms.”

— Yefim Dinitz, in “Dinitz’ Algorithm: The Original Version
and Even’s Version” (2006)

So I’m the bad guy now I hear, because I don’t go with the flow.
Don’t ever go with the flow, be the flow.

— Jay-Z, "Stream of Consciousness", May 16, 2015

11
Applications of Flows and Cuts

11.1 Edge-Disjoint Paths

One of the easiest applications of maximum flows is computing the maximum
number of edge-disjoint paths between two specified vertices s and t in a
directed graph G using maximum flows. A set of paths in G is edge-disjoint if
each edge in G appears in at most one of the paths; several edge-disjoint paths
may pass through the same vertex, however.

If we give each edge capacity 1, then the maximum flow from s to t pushes
either 0 or 1 units of flow along each edge. The flow-decomposition theorem
implies that the subgraph S of saturated edges is the union of several edge-
disjoint paths and cycles. Moreover, the number of paths in this decomposition
is exactly equal to the value of the flow. Extracting the actual paths from S is
straightforward—follow any directed path in S from s to t, remove that path
from S, and recurse.

Conversely, we can transform any collection of k edge-disjoint paths into a

1

11. APPLICATIONS OF FLOWS AND CUTS

flow by pushing one unit of flow along each path from s to t; the value of the
resulting flow is exactly k. It follows that any maximum flow algorithm actually
computes the largest possible set of edge-disjoint paths.

If we use Orlin’s algorithm to compute maximum flows, we can compute
edge-disjoint paths in O(V E) time, but Orlin’s algorithm is overkill for this
simple application. The cut ({s}, V \ {s}) has capacity at most V − 1, so the
maximum flow has value at most V − 1. Thus, Ford and Fulkerson’s original
augmenting path algorithm already runs in O(| f ∗| E) = O(VE) time.

The same algorithm can also be used to find edge-disjoint paths in undirected
graphs. First, replace every undirected edge uv in G with a pair of directed
edges u�v and v�u, each with unit capacity, and call the resulting directed
graph G′. Next, compute a maximum (s, t)-flow f ∗ in G′ using Ford-Fulkerson.
For any edge uv in G, if f ∗ saturates both directed edges u�v and v�u in G′,
we can remove both edges from the flow without changing its value. (More
generally, we can find an acyclic maximum flow in G′ by canceling all cycles
in f ∗, not only cycles of length 2.) Thus, without loss of generality, f ∗ assigns a
unique direction to each saturated edge. Finally, we can extract the edge-disjoint
paths by searching the subgraph of directed edges saturated by f ∗.

11.2 Vertex Capacities and Vertex-Disjoint Paths

Now suppose the vertices of the input graph G have capacities, not just the
edges. In addition to our other constraints, for each vertex v other than s and t,
we require the total flow into v (and therefore the total flow out of v) to be at
most some non-negative value c(v):

∑

u�v

f (u�v)≤ c(v).

Can we still compute maximum flows with these new vertex constraints?
In 1962, Ford and Fulkerson proposed the following reduction to a flow

network Ḡ with only edge capacities. Replace every vertex v with two vertices
vin and vout, connected by an edge vin�vout with capacity c(v), and then replace
every directed edge u�v with the edge uout�vin (keeping the same capacity).
Routine definition-chasing implies that every feasible (sout, tin)-flow in Ḡ is
equivalent to a feasible (s, t)-flow with the same value in the original graph G,
and vice versa. In particular, every maximum flow in Ḡ is equivalent to a
maximum flow in G. The reduction from G to Ḡ takes O(E) time, after which
we can compute the maximum flow in Ḡ using Orlin’s algorithm. Altogether,
computing the maximum flow in G requires O(VE) time.

It is now easy to compute the maximum number of vertex-disjoint paths
from s to t in O(V E) time: Assign capacity 1 to every vertex and compute a
maximum flow!

2

11.3. Bipartite Matching

s t
sout

sin

tout

tin

Figure 11.1. Reducing vertex-disjoint paths in G to edge-disjoint paths in Ḡ.

11.3 Bipartite Matching

Another natural application of maximum flows is finding maximum matchings
in bipartite graphs. A matching is a subgraph in which every vertex has degree
at most one, or equivalently, a collection of edges such that no two share a
vertex. The problem is to find a matching with the maximum number of edges.

For example, suppose we have a set of doctors who are looking for jobs, and
a set of hospitals who are looking for doctors. Each doctor lists all hospitals
where they are willing to work, and each hospital lists all doctors they are
willing to hire. Our task is to find the largest subset of doctor-hospital hires that
everyone is willing to accept.1 This problem is equivalent to finding a maximum
matching in a bipartite graph whose vertices are the doctors and hospitals, and
there is an edge between a doctor and a hospital if and only if each find the
other acceptable.

We can solve this problem by reducing it to a maximum flow problem, as
follows. Let G be the given bipartite graph with vertex set L ∪R, such that every
edge joins a vertex in L to a vertex in R. We create a new directed graph G′

by (1) orienting each edge from L to R, (2) adding a new source vertex s with
edges to every vertex in L, and (3) adding a new target vertex t with edges
from every vertex in R. Finally, we assign every edge in G′ a capacity of 1.

Any matching M in G can be transformed into a flow fM in G′ as follows:
For each edge uw in M , push one unit of flow along the path s�u�w�t. These
paths are disjoint except at s and t, so the resulting flow satisfies the capacity
constraints. Moreover, the value of the resulting flow is equal to the number of
edges in M .

Conversely, consider any (s, t)-flow f in G′, computed using the Ford-
Fulkerson augmenting path algorithm. Because the edge capacities are integers,
the Ford-Fulkerson algorithm assigns an integer flow to every edge. (This is easy
to verify by induction, hint, hint.) Moreover, since each edge has unit capacity,
the computed flow either saturates (f (e) = 1) or avoids (f (e) = 0) every edge

1This problem is very different from the stable matching problem we saw in Chapter ??,
because we aren’t trying to make each doctor and hospital as happy as possible.

3

11. APPLICATIONS OF FLOWS AND CUTS

in G′. Finally, since at most one unit of flow can enter any vertex in U or leave
any vertex in W , the saturated edges from U to W form a matching in G. The
size of this matching is exactly | f |.

Thus, the size of the maximum matching in G is equal to the value of the
maximum flow in G′, and provided we compute the maxflow using augmenting
paths, we can convert the actual maxflow into a maximum matching in O(E)
time. We can compute the maximum flow in O(VE) time using either Orlin’s
algorithm or off-the-shelf Ford-Fulkerson.

s t

Figure 11.2. A maximum matching in a bipartite graph G, and the corresponding maximum flow in G′.

It is enlightening to interpret the behavior of Ford-Fulkerson in G′ in terms
of the original bipartite graph G. The algorithm maintains a matching M in G,
which is initially empty; the edges of M correspond to edges in G′ that carry flow.
Call a vertex of G matched if is an endpoint of some edge in M , and unmatched
otherwise. In each iteration of the algorithm, we look for an alternating path
in G—a path from an unmatched vertex of L to an unmatched vertex in R that
alternates between edges in M and edges not in M . (Alternating paths in G
correspond exactly to augmenting paths for the current flow in G′.) If we find
an augmenting path P, we update M to the symmetric difference M ⊕ P, which
increases the number of edges in M by 1, and continue to the next iteration.
If there is no alternating path, the maxflow-mincut theorem implies that M
is a maximum matching, so the algorithm ends. Finding a single alternating
path requires O(E) time, and the algorithm halts after at most V iterations, so
the overall algorithm runs in O(VE) time. Figure 11.3 shows this algorithm in
action.

This characterization of maximum bipartite matchings in terms of alternating
paths was proved by Claude Berge in 1957 (independently of the maxflow-
mincut theorem), although it was already implicit in algorithms described by
Harald Kuhn in 1955, by Dénes Kőnig in 1916, and by Carl Jacobi around 1836.

A more sophisticated algorithm, proposed by John Hopcroft and Richard
Karp in 1973, computes maximummatchings in bipartite graphs in only O(

p
V E)

time, by finding several disjoint alternating paths in each iteration.

4

11.4. Tuple Selection

Figure 11.3. An increasing sequence of matchings connected by alternating paths.

11.4 Tuple Selection

The bipartite maximum matching problem is the simplest example of a broader
class of problems that I call tuple selection.2 The input to a tuple selection
problem consists of several finite sets X1, X2, . . . , Xd , each representing a different
discrete resource. Our task is to select the largest possible set of d-tuples, each
containing exactly one element from each set X i, subject to several capacity
constraints of the following form:

• For each index i, Each element x ∈ X i can appear in at most c(x) selected
tuples.

• For each index i, any two elements x ∈ X i and y ∈ X i+1 can appear in at
most c(x , y) selected tuples.

Each of the upper bounds c(x) and c(x , y) is either a (typically small) non-
negative integer or∞.

In the maximum-matching problem, we have d = 2 resources, each ele-
ment x has capacity c(x) = 1, and each pair (x , y) has capacity c(x , y) = 1
or c(x , y) = 0, depending on whether or not x y is an edge in the underlying
bipartite graph.

2I couldn’t find a standard name for these problems, so I made up my own. These are
sometimes called “assignment problems”, but it’s more common for the phrase “the assignment
problem” to refer to the problem of finding a maximum-weight bipartite matching in an edge-
weighted bipartite graph.

5

11. APPLICATIONS OF FLOWS AND CUTS

Because the resources are linearly ordered, and only pairs of objects in
adjacent subsets X i and X i+1 are constrained,3 the tuple selection problem can
be reduced to a maximum-flow problem in a directed graph G defined as follows:
• G contains a vertex for each element of each set X i, as well as a source

vertex s and a target vertex t. Each vertex x (except s and t) has capacity
c(x).

• G contains an edge s�w for each element w ∈ X1, an edge z�t for each
element z ∈ Xd , and an edge x�y with capacity c(x , y) for each pair of
elements x ∈ X i and y ∈ X i+1, for all i. (Optionally, we can omit edges x�y
with c(x , y) = 0.)

Every path from s to t in G corresponds to (or “is”) a d-tuple that we could
select; conversely, every selectable d-tuple that satisfies the stated constraints
corresponds to (or “is”) a path from s to t in G.

s t

X1
X2

Xd

Figure 11.4. The flow network for a tuple selection problem.

More generally, let f be an arbitrary feasible integer (s, t)-flow in G. Because
all capacities are integers or∞, the Flow Decomposition Theorem implies
that f is the sum of | f | paths from s to t, each carrying exactly one unit of
flow. Straightforward definition-chasing implies that the resulting set of tuples
satisfies all the capacity constraints. Conversely, for any set of k tuples that
satisfies the capacity constraints, the sum of the k corresponding paths is a
feasible integer (s, t)-flow with value k.

Thus, we can select the maximum number of tuples that satisfy the given
capacity constraints by computing a maximum (s, t)-flow f ∗ in G and then
computing a flow decomposition of f ∗. Because all finite capacities in G are
integers, we can assume without loss of generality that f ∗ is an integer flow, and
therefore (by the previous paragraph) corresponds to a valid set of | f ∗| tuples.

Exam Scheduling

The following “real world” scheduling problem might help clarify our general
reduction.

3If pairs of objects from even one non-adjacent pair of subsets (X i and X j where j > i + 1)
are also constrained, the problem becomes NP-hard, by a straightforward reduction from Exact-
3DimensionalMatching. We’ll discuss NP-hardness in the next chapter.

6

11.4. Tuple Selection

Sham-Poobanana University has hired you to write an algorithm to schedule
their final exams. There are n different classes, each of which needs to schedule
a final exam in one of r rooms during one of t different time slots. At most one
class’s final exam can be scheduled in each room during each time slot; conversely,
classes cannot be split into multiple rooms or multiple times. Moreover, each
exam must be overseen by one of p proctors.4 Each proctor can oversee at most
one exam at a time; each proctor is available for only certain time slots; and no
proctor is allowed oversee more than 5 exams total. The input to the scheduling
problem consists of three arrays:
• An integer array E[1 .. n] where E[i] is the number of students enrolled in

the ith class.

• An integer array S[1 .. r], where S[j] is the number of seats in the jth
room. The ith class’s final exam can be held in the jth room if and only if
E[i]≤ S[j].

• A boolean array A[1 .. t, 1 .. p] where A[k,ℓ] = True if and only if the ℓth
proctor is available during the kth time slot.5

let N = n+ r + t p denote the total size of the input. Your job is to design an
algorithm that either schedules a room, a time slot, and a proctor for every
class’s final exam, or correctly reports that no such schedule is possible.

This is a standard tuple-selection problem with four resources: classes,
rooms, time slots, and proctors. To solve this problem, we construct a flow
network G with six types of vertices—a source vertex s′, a vertex ci for each
class, a vertex r j for each room, a vertex tk for each time slot, a vertex pℓ
for each proctor, and a target vertex t ′—and five types of edges, as shown in
Figure 11.5:

sʹ tʹ

classes

rooms
times

proctors

1 1 1
5

∞

complete

Figure 11.5. A flow network for the exam scheduling problem.

• An edge s′�ci with capacity 1 for each class i. (“Each class can hold at most
one final exam.”)
4or as they are better known outside the US, invigilators
5Arguably, this information is better represented as a graph, but I thought that would make

the reduction more confusing.

7

11. APPLICATIONS OF FLOWS AND CUTS

• An edge ci�r j with capacity ∞ for each class i and room j such that
E[i]≤ S[j]. (“Class i can hold exams in room j if and only if the room has
enough seats.”) This is the only place where the enrollments E[i] and seat
numbers S[j] are used.

• An edge r j�tk with capacity 1 for each room j and time slot k. (“At most
one exam can be held in room j at time k.”)

• An edge tk�pℓ with capacity 1 for time slot k and proctor ℓ such that
A[ℓ, k] = True. (“A proctor can oversee at most one exam at any time, and
only during times that they are available.”)

• An edge pℓ�t ′ with capacity 5 for each proctor ℓ. (“Each proctor can oversee
at most 5 exams.”)

(I’m calling the source and target vertices s′ and t ′ instead of s and t only
because the problem statement already uses the variable t to denote the
number of time slots.) Altogether, G has n+ r + t + p+ 2= O(N) vertices and
O(nr + r t + t p) = O(N2) edges.

Each path from s′ to t ′ in G represents a unique valid choice of class, room,
time, and proctor for one final exam; specifically, the class fits into the room,
and the proctor is available at that time. Conversely, for each valid choice (class,
room, time, proctor), there is a corresponding path from s′ to t ′ in G. Thus,
we can construct a valid schedule for the maximum possible number of exams
by computing an maximum (s′, t ′)-flow f ∗ in G, decomposing f ∗ into paths
from s′ to t ′, and then transcribing each path into a class-room-time-proctor
assignment. If | f ∗| = n, we can return the resulting schedule; otherwise, we
can correctly report that scheduling all n final exams is impossible.

Constructing G from the given input data by brute force takes O(E) time.
We can compute the maximum flow in O(V E) time using either Ford-Fulkerson
(because | f ∗| ≤ n < V) or Orlin’s algorithm, and we can compute the flow
decomposition in O(V E) time. Thus, the overall algorithm runs in O(V E) =
O(N3) time.

11.5 Disjoint-Path Covers

A path cover of a directed graph G is a collection of directed paths in G such that
every vertex of G lies on at least one path. A disjoint-path cover of G is a path
cover such that every vertex of G lies on exactly one path. Every directed graph
has a trivial disjoint-path cover consisting of several paths of length zero, but
that’s boring. Instead, let’s look for disjoint-path covers that contain as few paths
as possible. This problem is NP-hard in general—a graph has a disjoint-path
cover of size 1 if and only if it contains a Hamiltonian path—but there is an
efficient flow-based algorithm for directed acyclic graphs.

8

11.5. Disjoint-Path Covers

To solve this problem for a given directed acyclic graph G = (V, E), we
construct a new bipartite graph G′ = (V ′, E′) as follows.
• H contains two vertices v♭ and v♯ for every vertex v of G.
• H contains an undirected edge u♭v♯ for every directed edge u�v in G.

(If G is represented as an adjacency matrix, then G′ is the bipartite graph
represented by the same adjacency matrix!)

Figure 11.6. Reducing minimum disjoint-path cover of a dag to maximum bipartite matching; squares
are flat♭ and diamonds are sharp♯.

Now I claim that G can be covered by k disjoint paths if and only if the new
graph G′ has a matching of size V − k. As usual, we prove the equivalence in
two stages:
⇐ Suppose G has a disjoint path cover P with k paths; think of P as a subgraph

of G. Every vertex in P has in-degree either 0 or 1; moreover, there is exactly
one vertex with in-degree 0 in each path in P. It follows that P has exactly
V − k edges. Now define a subset M of the edges of G′ as follows:

M :=
�

u♭v♯ ∈ E′
�

� u�v ∈ P
	

.

By definition of disjoint-path cover, every vertex of G has at most one
incoming edge in P and at most one outgoing edge in P. We conclude that
every vertex of G′ is incident to at most one edge in M ; that is, M is a
matching of size V − k.

⇒ Suppose G′ has a matching M of size V − k. We project M ′ back to G by
defining a subgraph P = (V, M ′), where

M ′ :=
�

u�v ∈ E
�

� u♭v♯ ∈ M
	

.

By definition of matching, every vertex of G has at most one incoming edge
in P and at most one outgoing edge in P. It follows that P is a collection
of disjoint directed paths in G; since P includes every vertex, P defines an
disjoint path cover with V − k edges. The number of paths in P is equal to
the number of vertices in G that have no incoming edge in M ′. We conclude
that P contains exactly k paths.

9

11. APPLICATIONS OF FLOWS AND CUTS

It follows immediately that we can find a minimum disjoint-path cover in G by
computing a maximum matching in G′, using Ford-Fulkerson’s maximum-flow
algorithm, in O(V ′E′) = O(VE) time.

Despite its formulation in terms of dags and paths, this is really a maximum
matching problem: We want to match as many vertices as possible to distinct
successors in the graph. The number of paths required to cover the dag is equal
to the number of vertices with no successor. (And of course, every bipartite
maximum matching problem is really a flow problem.)

Minimal Faculty Hiring

Let’s go back to Sham-Poobanana University for another “real-world” scheduling
problem.6 SPU offers several thousand courses every day. Due to extreme budget
cuts, the university needs to significantly reduce the size of its faculty. However,
because students pay tuition (and the university cannot afford lawyers), the
university must retain enough professors to guarantee that every class advertised
in the course catalog is actually taught. How few professors can SPU get away
with? Each remaining faculty member will be assigned a sequence of classes to
teach on any given day. The classes assigned to each professor must not overlap;
moreover, there must be enough slack in each professor’s schedule for them to
walk from one class to the next. For purposes of this problem, let’s assume that
every professor is capable of teaching every class, and that professors will not
have office hours, lunches, or bathroom breaks.7

Concretely, suppose there are n classes offered in m different locations. The
input to our problem consists of the following data:
• An array C[1 .. n] of classes, where each class C[i] has three fields: the

starting time C[i].start, the ending time C[i].end, and the location C[i].loc.

• A two-dimensional array T[1 .. m, 1 .. m], where T[u, v] is the time required
to walk from location u to location v.

We want to find the minimum number of professors that can collectively teach
every class, such that whenever a professor is assigned to teach two classes i
and j where C[j].start≥ C[i].start, we actually have

C[j].start ≥ C[i].end+ T
�

C[i].loc, C[j].loc
�

.

We can solve this problem by reducing it to a disjoint-path cover problem as
follows. We construct a dag G = (V, E) whose vertices are classes and whose
edges represent pairs of classes that are scheduled far enough apart to be taught

6For a somewhat more realistic (and less depressing) formulation of this problem, consider
airplanes and flights, or buses and bus routes, instead of professors and classes.

7They will, however, be expected to answer student emails as they walk between classes.

10

11.6. Baseball Elimination

by the same professor. Specifically, a directed edge i� j indicates that the same
professor can teach class i and then class j. It is easy to construct this dag in
O(n2) time by brute force. Then we find a disjoint-path cover of G using the
matching algorithm described above; each directed path in G represents a legal
class schedule for one professor. The entire algorithm runs in O(n2 + V E) =
O(n3) time.8

Despite its initial description in terms of intervals and distances, this is really
a maximum matching problem (which means it’s really really a maximum-flow
problem). Specifically, we want to match as many classes as possible to the
next class taught by the same professor. The number of professors we need is
equal to the number of classes with no assigned successor; each class without
an assigned successor is the last class that some professor teaches.

11.6 Baseball Elimination

Every year millions of American baseball fans eagerly watch their favorite team,
hoping they will win a spot in the playoffs, and ultimately the World Series.
Sadly, most teams are “mathematically eliminated” days or even weeks before the
regular season ends. Often, it is easy to spot when a team is eliminated—they
can’t win enough games to catch up to the current leader in their division.
But sometimes the situation is more subtle. For example, here are the actual
standings from the American League East on August 30, 1996.

Team Won–Lost Left NYY BAL BOS TOR DET

New York Yankees 75–59 28 3 8 7 3
Baltimore Orioles 71–63 28 3 2 7 4
Boston Red Sox 69–66 27 8 2 0 0

Toronto Blue Jays 63–72 27 7 7 0 0
Detroit Tigers 49–86 27 3 4 0 0

Detroit is clearly behind, but some die-hard Tigers fans may hold out hope
that their team can still win. After all, if Detroit wins all 27 of their remaining
games, they will end the season with 76 wins, more than any other team has
now. So as long as every other team loses every game. . . but that’s not possible,

8If we assume that every time interval T[u, v] is equal,9 this scheduling problem can actually
be solved in O(n log n) time using a simple greedy algorithm.

9Many American universities schedule ten-minute breaks between classes, under the remark-
able belief that a human being can walk from any classroom to any other classroom on the same
campus in ten minutes. I invite anyone who thinks this belief is realistic to visit my campus and
walk from one Siebel Center to the other.

11

11. APPLICATIONS OF FLOWS AND CUTS

because some of those other teams still have to play each other. Here is one
complete argument:10

By winning all of their remaining games, Detroit can finish the season with a record of
76 and 86. If the Yankees win just 2 more games, then they will finish the season with
a 77 and 85 record which would put them ahead of Detroit. So, let’s suppose the Tigers
go undefeated for the rest of the season and the Yankees fail to win another game.

The problem with this scenario is that New York still has 8 games left with Boston.
If the Red Sox win all of these games, they will end the season with at least 77 wins
putting them ahead of the Tigers. Thus, the only way for Detroit to even have a chance
of finishing in first place, is for New York to win exactly one of the 8 games with Boston
and lose all their other games. Meanwhile, the Sox must lose all the games they play
against teams other than New York. This puts them in a 3-way tie for first place. . . .

Now let’s look at what happens to the Orioles and Blue Jays in our scenario. Balti-
more has 2 games left with with Boston and 3 with New York. So, if everything happens
as described above, the Orioles will finish with at least 76 wins. So, Detroit can catch
Baltimore only if the Orioles lose all their games to teams other than New York and
Boston. In particular, this means that Baltimore must lose all 7 of its remaining games
with Toronto. The Blue Jays also have 7 games left with the Yankees and we have
already seen that for Detroit to finish in first place, Toronto must will all of these games.
But if that happens, the Blue Jays will win at least 14 more games giving them at final
record of 77 and 85 or better which means they will finish ahead of the Tigers. So, no
matter what happens from this point in the season on, Detroit can not finish in first
place in the American League East.

There has to be a better way to figure this out!
Here is a more abstract formulation of the problem. Our input consists of

two arrays W [1 .. n] and G[1 .. n, 1 .. n], where W [i] is the number of games
team i has already won, and G[i, j] is the number of upcoming games between
teams i and j. We want to determine whether team n can end the season with
the most wins (possibly tied with other teams).11

In the mid-1960s, Benjamin Schwartz observed that this question can be
modeled as a maximum flow problem; about 20 years later, Dan Gusfield, Charles
Martel, and David Fernández-Baca simplified Schwartz’s flow formulation to
a pair selection problem. Specifically, we want to know whether it is possible
to select a winner for each game, so that team n comes in first place. Let
R[i] =
∑

j G[i, j] denote the number of remaining games for team i. We will
assume that team n wins all R[n] of its remaining games. Then team n can come
in first place if and only if every other team i wins at most W [n] + R[n]−W [i]
of its R[i] remaining games.

Since we want to select a winning team for each game, we start by building
a bipartite graph, whose nodes represent the games and the teams. We have

10Both the example and this argument are taken from Eli Olinick’s web site https://s2.smu.
edu/~olinick/riot/detroit.html, which is based on Olinick’s joint research with Ilan Adler, Alan
Erera, and Dorit Hochbaum.

11We are implicitly assuming that no game ends in a tie and that every game is actually played.
Both assumptions are consistent with Major League Baseball rules, at least for games that affect
postseason standing, barring wars, natural disasters, or swarms of bees.

12

https://s2.smu.edu/~olinick/riot/detroit.html
https://s2.smu.edu/~olinick/riot/detroit.html

11.6. Baseball Elimination

�n
2

�

game nodes gi, j, one for each pair 1 ≤ i < j < n, and n− 1 team nodes t i,
one for each 1 ≤ i < n. For each pair i, j, we add edges gi, j�t i and gi, j�t j
with infinite capacity. We add a source vertex s and edges s�gi, j with capacity
G[i, j] for each pair i, j. Finally, we add a target node t and edges t i�t with
capacity W [n]−W [i] + R[n] for each team i.

Figure 11.7 shows the graph derived from the 1996 American League East
standings, where “team n” is the Detroit Tigers. All unlabeled edges have
infinite capacity.

NYY

BAL

BOS

TOR

NYY
BAL

NYY
BOS

NYY
TOR

BAL
BOS

BAL
TOR

ts

3
8
7
2
7

1

5

7

13

Figure 11.7. Cubs win! Cubs win!

Theorem. Team n can end the season in first place if and only if there is a
feasible flow in this graph that saturates every edge leaving s.

Proof: Suppose it is possible for team n to end the season in first place. Then
every team i < n wins at most W [n]+R[n]−W [i] of the remaining games. For
each game between team i and team j that team i wins, add one unit of flow
along the path s�gi, j�t i�t. Because there are exactly G[i, j] games between
teams i and j, every edge leaving s is saturated. Because each team i wins at
most W [n] + R[n]−W [i] games, the resulting flow is feasible.

Conversely, let f be a feasible flow that saturates every edge out of s.
Suppose team i wins exactly f (gi, j�t i) games against team j, for all i and j.
Then teams i and j play f (gi, j�t i) + f (gi, j�t j) = f (s�gi, j) = G[i, j] games,
so every upcoming game is played. Moreover, each team i wins a total of
∑

j f (gi, j�t i) = f (t i�t)≤W [n]+R[n]−W [i] upcoming games, and therefore
at most W [n] + R[n] games overall. Thus, if team n win all their upcoming
games, they end the season in first place. □

In summary, to decide whether our favorite team can win, we construct the
flow network, compute a maximum flow, and report whether than maximum
flow saturates every edge out of s. For example, in the graph in Figure 11.7,
the total capacity of the edges leaving s is 27 (because there are 27 remaining
games). On the other hand, the total capacity of the edges entering t is only 26,

13

11. APPLICATIONS OF FLOWS AND CUTS

which implies that the maximum flow value is at most 26. We conclude that
Detroit is mathematically eliminated.12

The flow network has O(n2) vertices and O(n2) edges, and it can be
constructed in O(n2) time. Using Orlin’s algorithm, we can compute the
maximum flow in O(V E) = O(n4) time.

This is not the fastest algorithm for the baseball elimination problem. In
2001, Kevin Wayne proved that one can determine all teams that are mathemat-
ically eliminated in only O(n3) time, essentially using a single maximum-flow
computation.

11.7 Project Selection

In our final example, suppose we are given a set of n projects that we could
possibly perform. Some projects cannot be started until certain other projects
are completed. The projects and their dependencies are described by a directed
acyclic graph G whose vertices are the projects, where each edge u�v indicates
that project u cannot be performed before project v. (This is exactly the form of
dependency graphs we considered in Chapter ??.) Finally, each project v has
an associated profit $(v) which will be given to us if the project is completed;
some projects have negative profits, which we interpret as positive costs. We can
choose to finish any subset X of the projects that includes all its dependents;
that is, for every project x ∈ X , every project that x depends on is also in X .
Our goal is to find a valid subset of the projects whose total profit is as large as
possible. In particular, if all of the jobs have negative profit, the correct answer
is to do nothing.

4 6 2 3

–2 –3 –5 –8

Figure 11.8. A dependency graph for a set of eight projects. Diamonds indicate profitable projects;
squares indicate costly projects. Each edge u�v means u depends on v.

At a high level, our task to partition the projects into two subsets S and T ,
the jobs we Select and the jobs we Turn down. So intuitively, we’d like to model
our problem as a minimum cut problem in a certain graph. But in which graph?
How do we enforce prerequisites? We want to maximize profit, but we only
know how to find minimum cuts. And how do we convert negative profits into
positive capacities?

12We got (un)lucky here; it is possible for a team to be eliminated even if the total capacity of
all edges into t is no smaller than the total capacity of edges out of s.

14

11.7. Project Selection

To transform our given constraint graph G into a flow network G′, we add a
source vertex s and a target vertex t to the dependency graph, with an edge
s�v for every profitable job v (with $(v)> 0), and an edge u�t for every costly
job u (with $(u)< 0). Intuitively, we can think of s as a new job (“Sleep!”) with
profit/cost 0 that we must perform last. We assign capacities to the edges of G′

as follows:
• c(s�v) = $(v) for every profitable job v;
• c(u�t) = −$(u) for every costly job u;
• c(u�v) =∞ for every dependency edge u�v.

All edge-capacities are positive, so this is a valid input to the maximum cut
problem.

Now consider an arbitrary (s, t)-cut (S, T) in G′. For any edge u�v in the
original dependency graph, if u ∈ S and v ∈ T , then ∥S, T∥=∞. Thus, we can
legally select the jobs in S if and only if the capacity of the cut (S, T) is finite.

4 6 2 3

–2 –3 –5 –8

s

4 26 3

t

2 853

∞∞

∞

∞

∞

∞ ∞ ∞

Figure 11.9. The flow network for the example dependency graph, along with its minimum cut. The
cut has capacity 13 and P = 15, so the total profit for the selected jobs is 2.

In fact, it turns out that cuts with smaller capacity correspond to job
selections with higher profit. Specifically, I claim that selecting the jobs in S
earns a total profit of P − ∥S, T∥, where P is the sum of all the positive profits:

P =
∑

v

max{0,$(v)}=
∑

$(v)>0

$(v).

We can prove this claim by straightforward definition-chasing, as follows. For
any subset X of projects, we define three values. (Here, as usual, we define
c(u�v) = 0 when u�v is not an edge.)

cost(X) :=
∑

u∈X
$(u)<0

−$(u) =
∑

u∈X

c(u�t)

yield(X) :=
∑

v∈X
$(v)>0

$(v) =
∑

v∈X

c(s�v)

15

11. APPLICATIONS OF FLOWS AND CUTS

profit(X) :=
∑

v∈X

$(v) = yield(X)− cost(X).

By definition, P = yield(V) = yield(S) + yield(T). Because the cut (S, T) has
finite capacity, only edges of the form s�v and u�t can cross the cut. By
construction, every edge s�v points to a profitable job and each edge u�t points
from a costly job. Thus, ∥S, T∥= cost(S) + yield(T). We immediately conclude
that P − ∥S, T∥= yield(S)− cost(S) = profit(S), as claimed.

It follows immediately that we can maximize our total profit by computing a
minimum cut in G′. We can easily construct G′ from G in O(V + E) time, and we
can compute the minimum (s, t)-cut in G′ in O(V E) time using Orlin’s algorithm.
We conclude that the entire project-selection algorithm runs in O(VE) time.

Exercises

1. Let G = (V, E) be a directed graph where for each vertex v, the in-degree
and out-degree of v are equal. Suppose G contains k edge-disjoint paths
from some vertex u to another vertex v. Under these conditions, must G also
contain k edge-disjoint paths from v to u? Give a proof or a counterexample
with explanation.

2. Given an undirected graph G = (V, E), with three vertices u, v, and w,
describe and analyze an algorithm to determine whether there is a path
from u to w that passes through v. [Hint: If G were a directed graph, this
problem would be NP-hard!]

3. Consider a directed graph G = (V, E)with several source vertices s1, s2, . . . , sσ
and target vertices t1, t1, . . . , tτ, where no vertex is both a source and a
target. A multi-terminal flow is a function f : E→ R≥0 that satisfies the flow
conservation constraint at every vertex that is neither a source nor a target.
The value | f | of a multi-terminal flow is the total excess flow out of all the
source vertices:

| f | :=
σ
∑

i=1

�

∑

w

f (si�w)−
∑

u

f (u�si)

�

As usual, we are interested in finding flows with maximum value, subject to
capacity constraints on the edges. (In particular, we don’t care how much
flow moves from any particular source to any particular target.)

(a) Consider the following algorithm for computing multi-terminal flows.
The variables f and f ′ represent flow functions. The subroutine
MaxFlow(G, s, t) solves the standard maximum flow problem with
source s and target t.

16

Exercises

MaxMultiFlow(G, s[1 ..σ], t[1 ..τ]):
f ← 0 〈〈Initialize the flow〉〉
for i← 1 to σ

for j← 1 to τ
f ′←MaxFlow(G f , s[i], t[j])
f ← f + f ′ 〈〈Update the flow〉〉

return f

Prove that this algorithm correctly computes a maximum multi-terminal
flow in G.

(b) Describe a more efficient algorithm to compute a maximum multi-
terminal flow in G.

4. The Island of Sodor is home to a large number of towns and villages,
connected by an extensive rail network. Recently, several cases of a deadly
contagious disease (either swine flu or zombies; reports are unclear) have
been reported in the village of Skarloey. The controller of the Sodor railway
plans to close down certain railway stations to prevent the disease from
spreading to Tidmouth, his home town. No trains can pass through a closed
station. To minimize expense (and public notice), he wants to close down
as few stations as possible. However, he cannot close the Skarloey station,
because that would expose him to the disease, and he cannot close the
Tidmouth station, because then he couldn’t visit his favorite pub.

Describe and analyze an algorithm to find the minimum number of
stations that must be closed to block all rail travel from Skarloey to Tidmouth.
The Sodor rail network is represented by an undirected graph, with a vertex
for each station and an edge for each rail connection between two stations.
Two special vertices s and t represent the stations in Skarloey and Tidmouth.

For example, given the following input graph, your algorithm should
return the integer 2.

s t

5. An n× n grid is an undirected graph with n2 vertices organized into n rows
and n columns. We denote the vertex in the ith row and the jth column
by (i, j). Every vertex (i, j) has exactly four neighbors (i − 1, j), (i + 1, j),
(i, j − 1), and (i, j + 1), except the boundary vertices, for which i = 1, i = n,
j = 1, or j = n.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be distinct vertices, called terminals,
in the n× n grid. The escape problem is to determine whether there are m

17

11. APPLICATIONS OF FLOWS AND CUTS

vertex-disjoint paths in the grid that connect the terminals to any m distinct
boundary vertices.

Figure 11.10. A positive instance of the escape problem, and its solution.

(a) Describe and analyze an efficient algorithm to solve the escape problem.
The running time of your algorithm should be a small polynomial function
of n.

(b) Now suppose the input to the escape problem consists of a single integer n
and the list of m terminal vertices. If m is very small, the previous running
time is actually exponential in the input size! Describe and analyze an
algorithm to solve the escape problem in time polynomial in m.

♥(c) Modify the previous algorithm to output an explicit description of the
escape paths (if they exist), still in time polynomial in m.

6. The SPU Commuter Silence Department is installing a mini-golf course in
the basement of the See-Bull Center! The playing field is a closed polygon
bounded by m horizontal and vertical line segments, meeting at right angles.
The course has n starting points and n holes, in one-to-one correspondence.
It is always possible hit the ball along a straight line directly from each
starting point to the corresponding hole, without touching the boundary
of the playing field. (Players are not allowed to bounce golf balls off the
walls; too much glass.) The n starting points and n holes are all at distinct
locations.

Sadly, the architect’s computer crashed just as construction was about to
begin. Thanks to the herculean efforts of their sysadmins, they were able to
recover the locations of the starting points and the holes, but all information
about which starting points correspond to which holes was lost!

Describe and analyze an algorithm to compute a one-to-one correspon-
dence between the starting points and the holes that meets the straight-line
requirement, or to report that no such correspondence exists. The input
consists of the x- and y-coordinates of the m corners of the playing field, the
n starting points, and the n holes. Assume you can determine in constant
time whether two line segments intersect, given the x- and y-coordinates
of their endpoints.

18

Exercises

Figure 11.11. A mini-golf course with five starting points (⋆) and holes (◦), and a legal correspondence
between them.

7. A cycle cover of a given directed graph G = (V, E) is a set of vertex-disjoint
cycles that cover every vertex in G. Describe and analyze an efficient
algorithm to find a cycle cover for a given graph, or correctly report that no
cycle cover exists. [Hint: Use bipartite matching!]

8. Suppose you are given an n × n checkerboard with some of the squares
deleted. You have a large set of dominos, just the right size to cover
two squares of the checkerboard. Describe and analyze an algorithm to
determine whether one tile the board with dominos—each domino must
cover exactly two undeleted squares, and each undeleted square must be
covered by exactly one domino.

Your input is a boolean array Deleted[1 .. n, 1 .. n], where Deleted[i, j] =
True if and only if the square in row i and column j has been deleted.
Your output is a single boolean; you do not have to compute the actual
placement of dominos. For example, for the board shown in Figure 11.12,
your algorithm should return True.

Figure 11.12. Covering a partial checkerboard with dominos.

9. Suppose we are given an n × n square grid, some of whose squares are
colored black and the rest white. Describe and analyze an algorithm to
determine whether tokens can be placed on the grid so that

• every token is on a white square;
• every row of the grid contains exactly one token; and
• every column of the grid contains exactly one token.

19

11. APPLICATIONS OF FLOWS AND CUTS

Your input is a two dimensional array IsWhite[1 .. n, 1 .. n] of booleans,
indicating which squares are white. Your output is a single boolean. For
example, given the grid in Figure 11.13 as input, your algorithm should
return True.

Figure 11.13. Marking every row and column in a grid.

10. Suppose we are given a set of boxes, each specified by their height, width,
and depth in centimeters. All three side lengths of every box lie strictly
between 10cm and 20cm. As you should expect, one box can be placed
inside another if the first box can be rotated so that its height, width, and
depth are respectively smaller than the height, width, and depth of the
second box. Boxes can be nested recursively. Call a box is visible if it is not
inside another box.

Describe and analyze an algorithm to nest the boxes so that the number
of visible boxes is as small as possible.

11. Suppose we are given an n×n grid, some of whose cells are marked; the grid
is represented by an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = True
if and only if cell (i, j) is marked. A monotone path through the grid starts
at the top-left cell, moves only right or down at each step, and ends at
the bottom-right cell. Our goal is to cover the marked cells with as few
monotone paths as possible.

Figure 11.14. Greedily covering the marked cells in a grid with four monotone paths.

(a) Describe an algorithm to find a monotone path that covers the largest
number of marked cells.

20

Exercises

(b) There is a natural greedy heuristic to find a small cover by monotone
paths: If there are any marked cells, find a monotone path π that covers
the largest number of marked cells, unmark any cells covered by π those
marked cells, and recurse. Show that this algorithm does not always
compute an optimal solution.

(c) Describe and analyze an efficient algorithm to compute the smallest set
of monotone paths that covers every marked cell.

12. The Faculty Senate at Sham-Poobanana University has decided to convene a
committee to determine whether Uncle Gabby, Professor Bobo Cornelius,
or Mofo the Psychic Gorilla should replace the recently disgraced Baron
Factotum as the new official mascot symbol of SPU’s athletic teams (The
Fighting Pooh-bahs). Exactly one faculty member must be chosen from each
academic department to serve on this committee. Some faculty members
have appointments in multiple departments, but each committee member
can represent only one department. For example, if Prof. Blagojevich is
affiliated with both the Department of Corruption and the Department of
Stupidity, and he is chosen as the Stupidity representative, then someone
else must represent Corruption. Finally, University policy requires that
every faculty committee must contain exactly the same number of assistant
professors, associate professors, and full professors. Fortunately, the number
of departments is a multiple of 3.

Describe and analyze an algorithm to choose a subset of the SPU faculty
to staff The Post-Factotum Simian Mascot Symbol Committee, or correctly
report that no valid committee is possible. Your input is a bipartite graph
indicating which professors belong to which departments; each professor
vertex is labeled with that professor’s rank (assistant, associate, or full).

13. The Department of Commuter Silence at Sham-Poobanana University has
a flexible curriculum with a complex set of graduation requirements. The
department offers n different courses, and there are m different requirements.
Each requirement specifies a subset of the n courses and the number of
courses that must be taken from that subset. The subsets for different
requirements may overlap, but each course can be used to satisfy at most
one requirement.

For example, suppose there are n = 5 courses A, B, C , D, E and m = 2
graduation requirements:

• You must take at least 2 courses from the subset {A, B, C}.
• You must take at least 2 courses from the subset {C , D, E}.

Then a student who has only taken courses B, C , D cannot graduate, but a
student who has taken either A, B, C , D or B, C , D, E can graduate.

21

11. APPLICATIONS OF FLOWS AND CUTS

Describe and analyze an algorithm to determine whether a given student
can graduate. The input to your algorithm is the list of m requirements (each
specifying a subset of the n courses and the number of courses that must be
taken from that subset) and the list of courses the student has taken.

14. You’re organizing the First Annual SPU Commuter Silence 72-Hour Dance
Exchange, to be held all day Friday, Saturday, and Sunday. Several 30-minute
sets of music will be played during the event, and a large number of DJs
have applied to perform. You need to hire DJs according to the following
constraints.

• Exactly k sets of music must be played each day, and thus 3k sets
altogether.

• Each set must be played by a single DJ in a consistent music genre
(ambient, bubblegum, dubstep, horrorcore, K-pop, Kwaito, mariachi,
straight-ahead jazz, trip-hop, Nashville country, parapara, ska, . . .).

• Each genre must be played at most once per day.

• Each candidate DJ has given you a list of genres they are willing to play.

• Each DJ can play at most three sets during the entire event.

Suppose there are n candidate DJs and g different musical genres available.
Describe and analyze an efficient algorithm that either assigns a DJ and a
genre to each of the 3k sets, or correctly reports that no such assignment is
possible.

15. Suppose you are running a web site that is visited by the same set of people
every day. Each visitor claims membership in one or more demographic
groups; for example, a visitor might describe himself as male, 40–50 years
old, a father, a resident of Illinois, an academic, a blogger, and a fan of Gilbert
and Sullivan.13 Your site is supported by advertisers. Each advertiser has
told you which demographic groups should see its ads and how many of its
ads you must show each day. Altogether, there are n visitors, k demographic
groups, and m advertisers.

Describe an efficient algorithm to determine, given all the data described
in the previous paragraph, whether you can show each visitor exactly one
ad per day, so that every advertiser has its desired number of ads displayed,
and every ad is seen by someone in an appropriate demographic group.

16. Suppose we are given an array A[1 .. m][1 .. n] of non-negative real numbers.
We want to round A to an integer matrix, by replacing each entry x in A

13I am a very good theoretical computer scientist, specifically, a geometric algorithm specialist.

22

Exercises

with either ⌊x⌋ or ⌈x⌉, without changing the sum of entries in any row or
column of A. For example:

1.2 3.4 2.4

3.9 4.0 2.1

7.9 1.6 0.5

7−→

1 4 2

4 4 2

8 1 1

(a) Describe and analyze an efficient algorithm that either rounds A in this
fashion, or reports correctly that no such rounding is possible.

(b) Prove that a legal rounding is possible if and only if the sum of entries
in each row is an integer, and the sum of entries in each column is an
integer. In other words, prove that either your algorithm from part (a)
returns a legal rounding, or a legal rounding is obviously impossible.

♥(c) Suppose we are guaranteed that none of the entries in the input matrix
A is an integer. Describe and analyze an even faster algorithm that either
rounds A or reports correctly that no such rounding is possible. For full
credit, your algorithm must run in O(mn) time. [Hint: Don’t use flows.]

17. Ad-hoc networks are made up of low-powered wireless devices. In prin-
ciple14, these networks can be used on battlefields, in regions that have
recently suffered from natural disasters, and in other hard-to-reach areas.
The idea is that a large collection of cheap, simple devices could be distrib-
uted through the area of interest (for example, by dropping them from an
airplane); the devices would then automatically configure themselves into a
functioning wireless network.

These devices can communicate only within a limited range. We assume
all the devices are identical; there is a distance D such that two devices can
communicate if and only if the distance between them is at most D.

We would like our ad-hoc network to be reliable, but because the devices
are cheap and low-powered, they frequently fail. If a device detects that
it is likely to fail, it should transmit its information to some other backup
device within its communication range. We require each device x to have k
potential backup devices, all within distance D of x; we call these k devices
the backup set of x . Also, we do not want any device to be in the backup set
of too many other devices; otherwise, a single failure might affect a large
fraction of the network.

So suppose we are given the communication radius D, parameters b
and k, and an array d[1 .. n, 1 .. n] of distances, where d[i, j] is the distance
between device i and device j. Describe an algorithm that either computes

14but not so much in practice

23

11. APPLICATIONS OF FLOWS AND CUTS

a backup set of size k for each of the n devices, such that no device appears
in more than b backup sets, or reports (correctly) that no good collection of
backup sets exists.

18. Faced with the threat of brutally severe budget cuts, Potemkin University
has decided to hire actors to sit in classes as “students”, to ensure that
every class they offer is completely full. Because actors are expensive, the
university wants to hire as few of them as possible.

Building on their previous leadership experience at the now-defunct
Sham-Poobanana University, the administrators at Potemkin have given
you a directed acyclic graph G = (V, E), whose vertices represent classes,
and where each edge i� j indicates that the same “student” can attend
class i and then later attend class j. In addition, you are also given an array
cap[1 .. V] listing the maximum number of “students” who can take each
class. Describe an analyze an algorithm to compute the minimum number
of “students” that would allow every class to be filled to capacity.

19. Quentin, Alice, and the other Brakebills Physical Kids are planning an
excursion through the Neitherlands to Fillory. The Neitherlands is a vast,
deserted city composed of several plazas, each containing a single fountain
that can magically transport people to a different world. Adjacent plazas are
connected by gates, which have been cursed by the Beast. The gates between
plazas are open only for five minutes every hour, all simultaneously—from
12:00 to 12:05, then from 1:00 to 1:05, and so on—and are otherwise locked.
During those five minutes, if more than one person passes through any single
gate, the Beast will detect their presence.15 Moreover, anyone attempting
to open a locked gate, or attempting to pass through more than one gate
within the same five-minute period will turn into a niffin.16 However, any
number of people can safely pass through different gates at the same time
and/or pass through the same gate at different times.

You are given a map of the Neitherlands, which is a graph G with a
vertex for each fountain and an edge for each gate, with the fountains to
Earth and Fillory clearly marked.

(a) Suppose you are also given a positive integer h. Describe and analyze
an algorithm to compute the maximum number of people that can walk
from the Earth fountain to the Fillory fountain in at most h hours—that
is, after the gates have opened at most h times—without anyone alerting
the Beast or turning into a niffin. The running time of your algorithm
should depend on h. [Hint: Build a different graph.]

15This is very bad.
16This is very very bad.

24

Exercises

♣♥(b) Describe an analyze an algorithm for part (a) whose running time is
polynomial in V and E, with no dependence on h.

(c) On the other hand, suppose you are also given an integer k. Describe
and analyze an algorithm to compute the minimum number of hours that
allow k people to walk from the Earth fountain to the Fillory fountain,
without anyone alerting the Beast or turning into a niffin. [Hint: Use
part (a).]

♥20. Let G = (L ⊔ R, E) be a bipartite graph, whose left vertices L are indexed
ℓ1,ℓ2, . . . ,ℓn and whose right vertices are indexed r1, r2, . . . , rn. A match-
ing M in G is non-crossing if, for every pair of edges ℓi r j and ℓi′ r j′ in M ,
we have i < i′ if and only if j < j′.

(a) Describe and analyze an algorithm to find the largest non-crossing
matching in G. [Hint: This is not really a flow problem.]

(b) Describe and analyze an algorithm to find the smallest number of non-
crossing matchings M1, M2, . . . , Mk such that each edge in G is in exactly
one matching Mi . [Hint: This is really a flow problem.]

♥21. Let G = (L ⊔ R, E) be a bipartite graph, whose left vertices L are indexed
ℓ1,ℓ2, . . . ,ℓn in some arbitrary order.

(a) A matching M in G is dense if there are no consecutive unmatched
vertices in L; that is, for each index i, at least one of the vertices ℓi and
ℓi+1 is incident to an edge in M . Describe an algorithm to determine
whether G has a dense matching.

(b) A matching M in G is sparse if there are no consecutive matched vertices
in L; that is, for each index i, at least one of the vertices ℓi and ℓi+1
is not incident to an edge in M . (In particular, the empty matching is
sparse.) Describe an algorithm to find the largest sparse matching in G.

(c) A matching M in G is palindromic if, for every index i, either ℓi and
ℓn−i+1 are both incident to edges in M , or neither ℓi nor ℓn−i+1 is incident
to an edge in M . (In particular, the empty matching is palindromic.)
Describe an algorithm to find the largest palindromic matching in G.

None of these problems restrict which vertices in R are matched or un-
matched.

♥22. A rooted tree is a directed acyclic graph, in which every vertex has exactly
one incoming edge, except for the root, which has no incoming edges.
Equivalently, a rooted tree consists of a root vertex, which has edges pointing
to the roots of zero or more smaller rooted trees. Describe an efficient
algorithm to compute, given two rooted trees A and B, the largest rooted

25

11. APPLICATIONS OF FLOWS AND CUTS

tree that is isomorphic to both a subgraph of A and a subgraph of B. More
briefly, describe an algorithm to find the largest common subtree of two
rooted trees.

[Hint: This would be a relatively straightforward dynamic programming
problem if either every node had O(1) children or the children of each node
were ordered from left to right. But for unordered trees with large degree,
you need another technique to combine recursive subproblems efficiently.]

26

	Applications of Flows and Cuts
	Edge-Disjoint Paths
	Vertex Capacities and Vertex-Disjoint Paths
	Bipartite Matching
	Tuple Selection
	Disjoint-Path Covers
	Baseball Elimination
	Project Selection
	Exercises

