
Algorithms Lecture 5: Hash Tables [Fa’22]

Insanity is repeating the same mistakes and expecting different results.
— Narcotics Anonymous (1981)

Calvin: There! I finished our secret code!
Hobbes: Let’s see.
Calvin: I assigned each letter a totally random number, so the code will be hard to

crack. For letter “A”, you write 3,004,572,688. “B” is 28,731,569½.
Hobbes: That’s a good code all right.
Calvin: Now we just commit this to memory.
Calvin: Did you finish your map of our neighborhood?
Hobbes: Not yet. How many bricks does the front walk have?

— Bill Watterson, “Calvin and Hobbes” (August 23, 1990)

[RFC 1149.5 specifies 4 as the standard IEEE-vetted random number.]
— Randall Munroe, xkcd (http://xkcd.com/221/)

Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

5 Hash Tables

5.1 Introduction

A hash table (or hash map) is a data structure for storing a set of items, so that we can quickly
determine whether an item is or is not in the set. The basic idea is to pick a hash function h that
maps every possible item x to a small integer h(x). Then we use the hash value h(x) as a key to
access x in the data structure. In its simplest form, a hash table is an array, in which each item x
is stored at index h(x).

Let’s be a little more specific. We want to store a set of n items. Each item is an element of a
fixed set U called the universe; we use u= |U | to denote the size of the universe, which is just
the number of items in U. A hash table is an array T[0 .. m− 1], where m is another positive
integer, which we call the table size. Typically, m is much smaller than u. A hash function is any
function of the form

h: U→ {0, 1, . . . , m− 1},

mapping each possible item in U to an index in the hash table. We say that an item x hashes to
the entry T[h(x)].

Of course, if u = m, we can use the trivial hash function h(x) = x; in other words, we can
use the item itself as the index into the table. The resulting data structure is called a direct access
table, or more commonly, an array. In most applications, however, this approach requires much
more space than we can reasonably allocate. On the other hand, we rarely need need to store
more than a tiny fraction of U. Ideally, the table size m should be roughly equal to the number n
of items we actually need to store, not the number of items that we might possibly store.

The downside of using a smaller table is that we must deal with collisions. We say that two
items x and y collide if their hash values are equal: h(x) = h(y). Each entry in the hash table

© Copyright 2022 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://xkcd.com/221/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 5: Hash Tables [Fa’22]

stores at most one item, so when a collision occurs, we need to resolve the collision using a more
complex method to store one or both colliding items.

We are now left with two different (but interacting) design decisions. First, how to we choose
a hash function h that can be evaluated quickly and that results in as few collisions as possible
(for some appropriate choice of table size m)? Second, when collisions do occur, how do we
actually resolve them?

5.2 The Importance of Being Random

If we already knew the precise data set that would be stored in our hash table, it is possible (but
not particularly easy) to find a perfect hash function that avoids collisions entirely. Unfortunately,
for most applications of hashing, we don’t know in advance what the user will put into the table.
Thus, it is impossible, even in principle, to devise a perfect hash function in advance; no matter
what hash function we choose, some pair of items from U must collide (unless m= u). In fact, for
any fixed hash function, there is a subset of at least u/m items that all hash to the same location.
If our input data happens to come from such a subset, either by chance or malicious intent, our
code will come to a grinding halt. This is a real security issue with core Internet routers, for
example; every router on the Internet backbone survives millions of attacks per day, including
timing attacks, from malicious agents.

The only way to provably avoid this worst-case behavior is to choose our hash functions
randomly. Specifically, we will fix a set H of functions from U to {0,1, . . . , m− 1} at “compile
time”. Then whenever we create a new hash table at “run time”, we choose the corresponding
hash function at random from the set H, according to some fixed probability distribution, and
use that hash function for the lifetime of that hash table. In particular, if we ever need to use
multiple hash tables, each table uses its own independent hash function. Different sets H and
different distributions over that set imply different theoretical guarantees. Screw this into your
brain:

Input data is not random!
So good hash functions must be random!

Let me be very clear: I do not mean that good hash functions should “act like” random
functions; I mean that they must be literally random. Any hash function that is hard-coded into
any program is an obviously bad hash function.1

In particular, the simple deterministic hash function h(x) = x mod m, which is often taught
and recommended under the name “hashing by division”, is utterly stupid. Many textbooks
correctly observe that this hash function is bad when m is a power of 2, because then h(x) is
just the low-order bits of m, but then they bizarrely recommend making m prime to avoid such
obvious collisions. But even when m is prime, any pair of items whose difference is an integer
multiple of m collide with absolute certainty; for all integers a and x , we have h(x + am) = h(x).
Why would anyone use a hash function where they know that certain pairs of keys always obviously
collide? That’s just insane!

1. . . for purposes of this class.

2

Algorithms Lecture 5: Hash Tables [Fa’22]

5.3 ...But Not Too Random

Most textbook theoretical analysis of hashing assumes ideal random hash functions. Ideal
randomness means that the hash function is chosen uniformly at random from the set of all
functions from U to {0, 1, . . . , m− 1}. Intuitively, for each new item x , we roll a new m-sided die
to determine the hash value h(x). Ideal randomness is a clean theoretical model, which provides
the strongest possible theoretical guarantees.

Unfortunately, ideal random hash functions are a theoretical fantasy; evaluating such a
function would require recording values in a separate data structure which we could access using
the items in our set, which is exactly what hash tables are for! So instead, we look for families of
hash functions with just enough randomness to guarantee good performance. Fortunately, most
hashing analysis does not actually require ideal random hash functions, but only some weaker
consequences of ideal randomness.

One property of ideal random hash functions that seems intuitively useful is uniformity. A
family H of hash functions is uniform if choosing a hash function uniformly at random from H

makes every hash value equally likely for every item in the universe:

Uniform: Pr
h∈H

�

h(x) = i
�

=
1
m

for all x and all i

We emphasize that this condition must hold for every item x ∈ U and every index i. Only the hash
function h is random.

In fact, despite its intuitive appeal, uniformity alone is neither important nor useful.
Consider the family K of constant hash functions defined as follows. For each integer a between
0 and m−1, let consta denote the constant function consta(x) = a for all x , and let K= {consta |
0≤ a ≤ m− 1} be the set of all such functions. It is easy to see that the set K is both perfectly
uniform and utterly useless!

A much more important goal is to minimize the number of collisions. A family of hash
functions is universal if, for any two items in the universe, the probability of collision is as small
as possible:

Universal: Pr
h∈H

�

h(x) = h(y)
�

≤
1
m

for all x ̸= y

(Trivially, if x = y , then Pr[h(x) = h(y)] = 1!) Again, we emphasize that this equation must hold
for every pair of distinct items; only the function h is random. The family of all constant functions
is uniform but not universal; on the other hand, universal hash families are not necessarily
uniform.2

Most elementary hashing analysis requires only a weaker versions of universality. A family of
hash functions is near-universal if the probability of collision is close to ideal:

Near-universal: Pr
h∈H

�

h(x) = h(y)
�

≤
2
m

for all x ̸= y

There’s nothing special about the number 2 in this definition; any other explicit constant will do.
On the other hand, more advanced analysis sometimes requires stricter conditions on the

family of hash functions that permit reasoning about larger sets of collisions. For any integer k,

2Confusingly, universality is often called the uniform hashing assumption, even though it is not an assumption
that the hash function is uniform.

3

Algorithms Lecture 5: Hash Tables [Fa’22]

we say that a family of hash functions is strongly k-universal or k-uniform if for any sequence
of k disjoint keys and any sequence of k hash values, the probability that each key maps to the
corresponding hash value is 1/mk:

k-uniform: Pr
h∈H

�

k
∧

j=1
h(x j) = i j

�

=
1

mk
for all distinct x1, . . . , xk and all i1, . . . , ik

All k-uniform hash families are both uniform and universal. Ideal random hash functions are
k-uniform for every positive integer k.

5.4 Chaining

One of the most common methods for resolving collisions in hash tables is called chaining. In a
chained hash table, each entry T[i] is not just a single item, but rather (a pointer to) a linked
list of all the items that hash to T[i]. Let ℓ(x) denote the length of the list T[h(x)]. To find an
item x in the hash table, we scan the entire list T[h(x)]. The worst-case time required to search
for x is O(1) to compute h(x) plus O(1) for every element in T[h(x)], or O(1+ ℓ(x)) overall.
Inserting and deleting x also take O(1+ ℓ(x)) time.

G H

M I T

R O

S

A L

A chained hash table with load factor 1.

Let’s compute the expected value of ℓ(x) under this assumption; this will immediately imply
a bound on the expected time to search for an item x . To be concrete, let’s suppose that x is not
already stored in the hash table. For all items x and y , we define the indicator variable

Cx ,y =
�

h(x) = h(y)
�

.

(In case you’ve forgotten the bracket notation, Cx ,y = 1 if h(x) = h(y) and Cx ,y = 0 if h(x) ̸=
h(y).) Since the length of T[h(x)] is precisely equal to the number of items that collide with x ,
we have

ℓ(x) =
∑

y∈T

Cx ,y .

Assuming h is chosen from a universal set of hash functions, we have

E[Cx ,y] = Pr[Cx ,y = 1]

¨

= 1 if x = y

≤ 1/m otherwise

Now we just have to grind through the definitions.

E[ℓ(x)] =
∑

y∈T

E[Cx ,y]≤
∑

y∈T

1
m
=

n
m

We call this fraction n/m the load factor of the hash table. Since the load factor shows up
everywhere, we will give it its own symbol α.

4

Algorithms Lecture 5: Hash Tables [Fa’22]

α :=
n
m

Similarly, if h is chosen from a near-universal set of hash functions, then E[ℓ(x)]≤ 2α. Thus, the
expected time for an unsuccessful search in a chained hash table, using near-universal hashing, is
Θ(1+α). As long as the number of items n is only a constant factor bigger than the table size m,
the search time is a constant. A similar analysis gives the same expected time bound (with a
slightly smaller constant) for a successful search.

Obviously, linked lists are not the only data structure we could use to store the chains; any
data structure that can store a set of items will work. For example, if the universe U has a total
ordering, we can store each chain in a balanced binary search tree. This reduces the expected
time for any search to O(1+ logℓ(x)), and assuming near-universal hashing, the expected time
for any search is O(1+ logα).

Another natural possibility is to work recursively! Specifically, for each T[i], we maintain a
hash table Ti containing all the items with hash value i. Collisions in those secondary tables are
resolved recursively, by storing secondary overflow lists in tertiary hash tables, and so on. The
resulting data structure is a tree of hash tables, whose leaves correspond to items that (at some
level of the tree) are hashed without any collisions. If every hash table in this tree has size m,
then the expected time for any search is O(logm n). In particular, if we set m=

p
n, the expected

time for any search is constant. On the other hand, there is no inherent reason to use the same
hash table size everywhere; after all, hash tables deeper in the tree are storing fewer items.

Caveat Lector! The preceding analysis does not imply that the expectedworst-case search time
is constant! The expected worst-case search time is O(1+ L), where L =maxx ℓ(x). Even with
ideal random hash functions, the maximum list size L is very likely to grow faster than any constant,
unless the load factor α is significantly smaller than 1. For example, E[L] = Θ(log n/ log log n)
when α= 1. We’ve stumbled on a powerful but counterintuitive fact about probability: When
several individual items are distributed independently and uniformly at random, the overall
distribution of those items is almost never uniform in the traditional sense! Later in this lecture, I’ll
describe how to achieve constant expected worst-case search time using secondary hash tables.

5.5 Multiplicative Hashing

Arguably the simplest technique for near-universal hashing, first described by Lawrence Carter
and Mark Wegman in the late 1970s, is called multiplicative hashing. I’ll describe two variants
of multiplicative hashing, one using modular arithmetic with prime numbers, the other using
modular arithmetic with powers of two. In both variants, a hash function is specified by an
integer parameter a, called a salt. The salt is chosen uniformly at random when the hash table is
created and remains fixed for the entire lifetime of the table. All probabilities are defined with
respect to the random choice of salt.

For any non-negative integer n, let [n] denote the n-element set {0, 1, . . . , n−1}, and let [n]+
denote the (n− 1)-element set {1,2, . . . , n− 1}.

ÆÆÆ

5

Algorithms Lecture 5: Hash Tables [Fa’22]

All the number theory in the following examples is fun, but tabulation and random-matrix hashing
are simpler and easier to analyze (although less space-efficient). Both schemes assume |U|= 2w

and m = 2ℓ. Items to be hashed are w-bit words, and hash values themselves are ℓ-bit labels.
Finally,⊕ represents bitwise exclusive-or.

• Tabulation: Treat every word as a pair (x , y) ∈ [2]w/2. Fill two arrays A[0 .. 2w/2 − 1]
and B[0 .. 2w/2 − 1] with independent uniform ℓ-bit labels. Finally, define hA,B(x , y) =
A[x]⊕ B[y].

• More generally, for any constant c, we can treat every word as a tuple (x1, . . . , xc) ∈ [2]w/c ,
fill a two-dimensional array A[1 .. c, 0 .. 2w/c − 1] with random ℓ-bit labels, and finally
define hA(x) = A[1, x1]⊕ A[2, x2]⊕ · · · ⊕ A[c, xc].

• Random matrix: Fill an ℓ×w matrix M with independent uniform random bits, and define
hM (x) = M x mod 2=

⊕

i Mi x i .
All three schemes are actually 3-uniform (but not 4-uniform). Nevertheless, multidimensional
tabulation hashing shares many of the concentration bounds of hash families with greater
independence [Pătraşcu and Thorup 2011].

5.5.1 Prime multiplicative hashing

The first family of multiplicative hash functions is defined in terms of a prime number p > |U|.
For any integer a ∈ [p]+, define a function multpa : U→ [m] by setting

multpa(x) = (ax mod p)mod m

and let
MP :=
�

multpa

�

� a ∈ [p]+
	

denote the set of all such functions. Here, the integer a is the salt for the hash function multpa.
We claim that this family of hash functions is near-universal.

The use of prime modular arithmetic is motivated by the fact that division modulo prime
numbers is well-defined.

Lemma 1. For every integer a ∈ [p]+, there is a unique integer z ∈ [p]+ such that az mod p = 1.

Proof: Fix an arbitrary integer a ∈ [p]+.
Suppose az mod p = az′ mod p for some integers z, z′ ∈ [p]+. We immediately have a(z −

z′)mod p = 0, which implies that a(z − z′) is divisible by p. Because p is prime, the inequality
1≤ a ≤ p− 1 implies that z − z′ must be divisible by p. Similarly, because 1≤ z, z′ ≤ p− 1, we
have 2− p ≤ z − z′ ≤ p− 2, which implies that z = z′. It follows that for each integer h ∈ [p]+,
there is at most one integer z ∈ [p]+ such that az mod p = h.

Similarly, if az mod p = 0 for some integer z ∈ [p]+, then because p is prime, either a or z is
divisible by p, which is impossible.

We conclude that the set {az mod p | z ∈ [p]+} has exactly p− 1 distinct elements, all non-
zero, and therefore is equal to [p]+. In other words, multiplication by a defines a permutation of
[p]+. The lemma follows immediately. □

Let a−1 denote the multiplicative inverse of a, as guaranteed by the previous lemma. We can
now precisely characterize when the hash values of two items collide.

Lemma 2. For any elements a, x , y ∈ [p]+, we have a collision multpa(x) = multpa(y) if and
only if either x = y or multpa((x − y)mod p) = 0 or multpa((y − x)mod p) = 0.

6

Algorithms Lecture 5: Hash Tables [Fa’22]

Proof: Fix three arbitrary elements a, x , y ∈ [p]+. There are three cases to consider, depending
on whether ax mod p is greater than, less than, or equal to a y mod p.

First, suppose ax mod p = a y mod p. Then x = a−1ax mod p = a−1a y mod p = y, which
implies that x = y . (This is the only place we need primality.)

Next, suppose ax mod p > a y mod p. We immediately observe that

ax mod p− a y mod p = (ax − a y)mod p = a(x − y)mod p.

Straightforward algebraic manipulation now implies that multpa(x) =multpa(y) if and only if
multpa((x − y)mod p) = 0.

multpa(x) =multpa(y) ⇐⇒ (ax mod p)mod m= (a y mod p)mod m

⇐⇒ (ax mod p)− (a y mod p)≡ 0 (mod m)

⇐⇒ a(x − y)mod p ≡ 0 (mod m)

⇐⇒ multpa((x − y)mod p) = 0

Finally, if ax mod p < a y mod p, an argument similar to the previous case implies that
multpa(x) =multpa(y) if and only if multpa((y − x)mod p) = 0. □

For any distinct integers x , y ∈ U, Lemma 2 immediately implies that

Pra

�

multpa(x) =multpa(y)
�

≤ Pra

�

multpa((x − y)mod p) = 0
�

+ Pra

�

multpa((y − x)mod p) = 0
�

.

Thus, to show that MP is near-universal, it suffices to prove the following lemma.

Lemma 3. For any integer z ∈ [p]+, we have Pra[multpa(z) = 0]≤ 1/m.

Proof: Fix an arbitrary integer z ∈ [p]+. Lemma 1 implies that for any integer h ∈ [p]+, there is
a unique integer a ∈ [p]+ such that (az mod p) = h; specifically, a = h · z−1 mod p. There are
exactly ⌊(p − 1)/m⌋ integers k such that 1 ≤ km ≤ p − 1. Thus, there are exactly ⌊(p − 1)/m⌋
salts a such that multpa(z) = 0. □

Our analysis of collision probability can be improved, but only slightly. Carter and Wegman
observed that if p mod (m+1) = 1, then Pra[multpa(1) =multpa(m+ 1)] = 2/(m+ 1). (For any
positive integer m, there are infinitely many primes p such that p mod (m+ 1) = 1.) For example,
by enumerating all possible values of multpa(x) when p = 5 and m= 3, we immediately observe
that Pra[multpa(1) =multpa(4)] = 1/2= 2/(m+ 1)> 1/3.

1 2 3 4

0 0 0 0 0

1 1 2 0 1

2 2 1 1 0

3 0 1 1 2

4 1 0 2 1

7

Algorithms Lecture 5: Hash Tables [Fa’22]

5.5.2 Actually universal hashing

Our first example of a truly universal family of hash functions uses a small modification of
the multiplicative method we just considered. For any integers a ∈ [p]+ and b ∈ [p], let
ha,b : U→ [m] be the function

ha,b(x) = ((ax + b)mod p)mod m

and let
MB+ :=
�

ha,b

�

� a ∈ [p]+, b ∈ [p]
	

denote the set of all p(p − 1) such functions. A function in this family is specified by two salt
parameters a and b.

Theorem 1. MB+ is universal.

Proof: Fix four integers r, s, x , y ∈ [p] such that x ̸= y and r ̸= s. The linear system

ax + b ≡ r (mod p)

a y + b ≡ s (mod p)

has a unique solution a, b ∈ [p] with a ̸= 0, namely

a = (r − s)(x − y)−1 mod p

b = (sx − r y)(x − y)−1 mod p

where z−1 denotes the mod-p multiplicative inverse of z, as guaranteed by Lemma 1. It follows
that

Pr
a,b

�

(ax + b)mod p = r and (a y + b)mod p = s
�

=
1

p(p− 1)
,

and therefore
Pr
a,b

�

ha,b(x) = ha,b(y)
�

=
N

p(p− 1)
,

where N is the number of ordered pairs (r, s) ∈ [p]2 such that r ̸= s but r mod m = s mod m.
For each fixed r ∈ [p], there are at most ⌊p/m⌋ integers s ∈ [p] such that r ̸= s but r mod m=
s mod m. Because p is prime, we have ⌊p/m⌋ ≤ (p− 1)/m. We conclude that N ≤ p(p− 1)/m,
which completes the proof. □

More careful analysis implies that the collision probability for any pair of items is exactly

(p− p mod m)(p− (m− p mod m))
mp(p− 1)

.

Because p is prime, we must have 0 < p mod m < m, so this probability is actually strictly less
than 1/m. For example, when p = 5 and m= 3, the collision probability is

(5− 5 mod 3)(5− (3− 5 mod 3))
3 · 4 · 5

=
1
5
<

1
3

,

8

Algorithms Lecture 5: Hash Tables [Fa’22]

which we can confirm by enumerating all possible values:

b = 0

1 2 3 4

0 0 0 0 0

1 1 2 0 1

2 2 1 1 0

3 0 1 1 2

4 1 0 2 1

b = 1

1 2 3 4

1 1 1 1 1

1 2 0 1 0

2 0 0 2 1

3 1 2 0 0

4 0 1 0 2

b = 2

1 2 3 4

0 2 2 2 2

1 0 1 0 1

2 1 1 0 0

3 0 0 1 1

4 1 0 1 0

b = 3

1 2 3 4

0 0 0 0 0

1 1 0 1 2

2 0 2 1 1

3 1 1 2 0

4 2 1 0 1

b = 4

1 2 3 4

0 1 1 1 1

1 0 1 2 0

2 1 0 0 2

3 2 0 0 1

4 0 2 1 0

5.5.3 Binary multiplicative hashing

A slightly simpler variant of multiplicative hashing that avoids the need for large prime numbers
was first formally analyzed by Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and
Martti Penttonen in 1997, although it was proposed decades earlier. For this variant, we assume
that U= [2w] and that m= 2ℓ for some integers w and ℓ. Thus, our goal is to hash w-bit integers
(“words”) to ℓ-bit integers (“labels”).

For any odd integer a ∈ [2w], we define the hash function multba : U→ [m] as follows:

multba(x) :=
�

(a · x)mod 2w

2w−ℓ

�

Again, the odd integer a is the salt.

 ℓ

2w

w x

a

a⋅x

ha(x)

w

Binary multiplicative hashing.

If we think of any w-bit integer z as an array of bits z[0 .. w − 1], where z[0] is the least
significant bit, this function has an easy interpretation. The product a · x is 2w bits long; the hash
value multba(x) consists of the top ℓ bits of the bottom half:

multba(x) := (a · x)[w− 1 .. w− ℓ]

Most programming languages automatically perform integer arithmetic modulo some power of
two. If we are using an integer type with w bits, the function multba(x) can be implemented by
a single multiplication followed by a single right-shift. For example, in C:

#define hash(a,x) ((a)*(x) >> (WORDSIZE-HASHBITS))

Nowwe claim that the familyMB := {multba | a is odd} of all such functions is near-universal.
To prove this claim, we again need to argue that division is well-defined, at least for a large
subset of possible words. Let W denote the set of odd integers in [2w].

9

Algorithms Lecture 5: Hash Tables [Fa’22]

Lemma 4. For any integers x , z ∈W , there is exactly one integer a ∈W such that ax mod 2w = z.

Proof: Fix an integer x ∈ W . Suppose ax mod 2w = bx mod 2w for some integers a, b ∈ W .
Then (b − a)x mod 2w = 0, which means x(b − a) is divisible by 2w. Because x is odd, b − a
must be divisible by 2w. But −2w < b− a < 2w, so a and b must be equal. Thus, for each z ∈W ,
there is at most one a ∈W such that ax mod 2w = z. In other words, the function fx : W →W
defined by fx(a) := ax mod 2w is injective. Every injective function from a finite set to itself is a
bijection. □

Theorem 2. MB is near-universal.

Proof: Fix two distinct words x , y ∈ U such that x < y. If multba(x) = multba(y), then the
top ℓ bits of a(y − x)mod 2w are either all 0s (if ax mod 2w ≤ a y mod 2w) or all 1s (otherwise).
Equivalently, if multba(x) =multba(y), then either multba(y − x) = 0 or multba(y − x) = m−1.
Thus,

Pr[multba(x) =multba(y)] ≤ Pr[multba(y − x) = 0] + Pr[multba(y − x) = m− 1].

We separately bound the terms on the right side of this inequality.
Because x ̸= y , we can write (y − x)mod 2w = q2r for some odd integer q and some integer

0≤ r ≤ w−1. The previous lemma implies that aq mod 2w consists of w−1 random bits followed
by a 1. Thus, aq2r mod 2w consists of w− r − 1 random bits, followed by a 1, followed by r 0s.
There are three cases to consider:

• If r < w− ℓ, then multba(y − x) consists of ℓ random bits, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 1/2ℓ.

• If r = w− ℓ, then multba(y − x) consists of ℓ− 1 random bits followed by a 1, so

Pr[multba(y − x) = 0] = 0 and Pr[multba(y − x) = m− 1] = 2/2ℓ.

• Finally, if r < w− ℓ, then multba(y − x) consists of zero or more random bits, followed by
a 1, followed by one or more 0s, so

Pr[multba(y − x) = 0] = Pr[multba(y − x) = m− 1] = 0.

In all cases, we have Pr[multba(x) =multba(y)]≤ 2/2ℓ, as required. □

5.6 High Probability Bounds: Balls and Bins⋆

Although any particular search in a chained hash tables requires only constant expected time,
but what about the worst search time? Assuming that we are using ideal random hash functions,
this question is equivalent to the following more abstract problem. Suppose we toss n balls
independently and uniformly at random into one of n bins. Can we say anything about the
number of balls in the fullest bin?

Lemma 5. If n balls are thrown independently and uniformly into n bins, then with high
probability, the fullest bin contains O(log n/ log log n) balls.

10

Algorithms Lecture 5: Hash Tables [Fa’22]

Proof: Let X j denote the number of balls in bin j, and let X̂ =max j X j be the maximum number
of balls in any bin. Clearly, E[X j] = 1 for all j.

Now consider the probability that bin j contains at least k balls. There are
�n

k

�

choices for
those k balls, and the probability of any particular subset of k balls landing in bin j is 1/nk, so
the union bound (Pr[A∨ B]≤ Pr[A] + Pr[B] for any events A and B) implies

Pr[X j ≥ k] ≤
�

n
k

��

1
n

�k

≤
nk

k!

�

1
n

�k

=
1
k!

.

Setting k = 2c lg n/ lg lg n, we have

k!≥ kk/2 =
�

2c lg n
lg lg n

�2c lg n/ lg lg n

≥
�p

lg n
�2c lg n/ lg lg n

= 2c lg n = nc ,

which implies that

Pr
�

X j ≥
2c lg n
lg lg n

�

<
1
nc

.

This probability bound holds for every bin j. Thus, by the union bound, we conclude that

Pr
�

max
j

X j >
2c lg n
lg lg n

�

= Pr
�

X j >
2c lg n
lg lg n

for all j
�

≤
n
∑

j=1

Pr
�

X j >
2c lg n
lg lg n

�

<
1

nc−1
. □

A somewhat more complicated argument implies that if we throw n balls randomly into n
bins, then with high probability, the fullest bin contains at least Ω(log n/ log log n) balls.

However, if we make the hash table sufficiently large, we can expect every ball to land in its
own bin. Suppose there are m bins. Let Ci j be the indicator variable that equals 1 if and only
if i ̸= j and ball i and ball j land in the same bin, and let C =

∑

i< j Ci j be the total number of
pairwise collisions. Since the balls are thrown uniformly at random, the probability of a collision
is exactly 1/m, so E[C] =

�n
2

�

/m. In particular, if m = n2, the expected number of collisions is
less than 1/2, and thus by Markov’s inequality, the probability of getting even one collision is less
than 1/2.

We can give a slightly weaker version of this bound that assumes only near-universal hashing.
Suppose we hash n items into a table of size m. Linearity of expectation implies that the expected
number of collisions is

∑

x<y

Pr[h(x) = h(y)]≤
�

n
2

�

2
m
=

n(n− 1)
m

.

In particular, if we set m = 2n2, the expected number of collisions is less than 1/2. Again,
Markov’s inequality implies that the probability of even one collision is less than 1/2.

If we make the hash table slightly larger, we can even prove a high-probability bound.

Lemma 6. For any ϵ > 0, if n balls are thrown independently and uniformly into n2+ϵ bins, then
with high probability, no bin contains more than one ball.

Proof: Let X j denote the number of balls in bin j, as in the previous proof. We can easily
bound the probability that bin j is empty, by taking the two most significant terms in a binomial
expansion:

Pr[X j = 0] =
�

1−
1
m

�n

=
n
∑

i=1

�

n
i

��

−1
m

�i

= 1−
n
m
+Θ

�

n2

m2

�

> 1−
n
m

11

Algorithms Lecture 5: Hash Tables [Fa’22]

We can similarly bound the probability that bin j contains exactly one ball:

Pr[X j = 1] = n ·
1
m

�

1−
1
m

�n−1

=
n
m

�

1−
n− 1

m
+Θ

�

n2

m2

��

>
n
m
−

n(n− 1)
m2

It follows immediately that Pr[X j > 1] < n(n − 1)/m2. The union bound now implies that
Pr[X̂ > 1]< n(n− 1)/m. If we set m= n2+ϵ for any constant ϵ > 0, then the probability that no
bin contains more than one ball is at least 1− 1/nϵ. □

5.7 Perfect Hashing

So far we are faced with two alternatives. If we use a small hash table to keep the space usage
down, even if we use ideal random hash functions, the resulting worst-case expected search time
is Θ(log n/ log log n) with high probability, which is not much better than a binary search tree.
On the other hand, we can get constant worst-case search time, at least in expectation, by using
a table of roughly quadratic size, but that seems unduly wasteful.

Fortunately, there is a fairly simple way to combine these two ideas to get a data structure of
linear expected size, whose expected worst-case search time is constant. At the top level, we use
a hash table of size m= n and a near-universal hash function, but instead of linked lists, we use
secondary hash tables to resolve collisions. Specifically, the jth secondary hash table has size 2n2

j ,
where n j is the number of items whose primary hash value is j. Our earlier analysis implies that
with probability at least 1/2, the secondary hash table has no collisions at all, so the worst-case
search time in any secondary hash table is O(1). (If we discover a collision in some secondary
hash table, we can simply rebuild that table with a new near-universal hash function.)

Although this data structure apparently needs significantly more memory for each secondary
structure, the overall increase in space is insignificant, at least in expectation.

Lemma 7. Assuming near-universal hashing, we have E
�∑

i n2
i

�

< 3n.

Proof: let h(x) denote the position of x in the primary hash table. We can rewrite the sum
∑

i n2
i

in terms of the indicator variables [h(x) = i] as follows. The first equation uses the definition
of ni; the rest is just routine algebra.

∑

i

n2
i =
∑

i

�

∑

x

[h(x) = i]

�2

=
∑

i

�

∑

x

∑

y

[h(x) = i][h(y) = i]

�

=
∑

i

�

∑

x

[h(x) = i]2 + 2
∑

x<y

[h(x) = i][h(y) = i]

�

=
∑

x

∑

i

[h(x) = i]2 + 2
∑

x<y

∑

i

[h(x) = i][h(y) = i]

=
∑

x

∑

i

[h(x) = i] + 2
∑

x<y

[h(x) = h(y)]

The first sum is equal to n, because each item x hashes to exactly one index i, and the second
sum is just the number of pairwise collisions. Linearity of expectation immediately implies that

E

�

∑

i

n2
i

�

= n+ 2
∑

x<y

Pr[h(x) = h(y)] ≤ n+ 2 ·
n(n− 1)

2
·

2
n
= 3n− 2. □

12

Algorithms Lecture 5: Hash Tables [Fa’22]

This lemma immediately implies that the expected size of our two-level hash table is O(n).
By our earlier analysis, the expected worst-case search time is O(1).

5.8 Open Addressing

Another method used to resolve collisions in hash tables is called open addressing. Here, rather
than building secondary data structures, we resolve collisions by looking elsewhere in the table.
Specifically, we have a sequence of hash functions 〈h0, h1, h2, . . . , hm−1〉, such that for any item x ,
the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is a permutation of 〈0, 1,2, . . . , m− 1〉. In other
words, different hash functions in the sequence always map x to different locations in the hash
table.

We search for x using the following algorithm, which returns the array index i if T[i] = x ,
‘absent’ if x is not in the table but there is an empty slot, and ‘full’ if x is not in the table and
there no no empty slots.

OpenAddressSearch(x):
for i← 0 to m− 1

if T[hi(x)] = x
return hi(x)

else if T[hi(x)] =∅
return ‘absent’

return ‘full’

The algorithm for inserting a new item into the table is similar; only the second-to-last line is
changed to T[hi(x)]← x . Notice that for an open-addressed hash table, the load factor is never
bigger than 1.

Just as with chaining, we’d like to pretend that the sequence of hash values is truly random,
for purposes of analysis. Specifically, most open-addressed hashing analysis uses the following
assumption, which is impossible to enforce in practice, but leads to reasonably predictive results
for most applications.

Strong uniform hashing assumption:

For each item x , the probe sequence 〈h0(x), h1(x), . . . , hm−1(x)〉 is
equally likely to be any permutation of the set {0,1, 2, . . . , m− 1}.

Let’s compute the expected time for an unsuccessful search in light of this assupmtion.
Suppose there are currently n elements in the hash table. The strong uniform hashing assumption
has two important consequences:

• Uniformity: For each item x and index i, the hash value hi(x) is equally likely to be any
integer in the set {0,1, 2, . . . , m− 1}.

• Full independence: For each item x , if we ignore the first probe h0(x), the remaining
probe sequence 〈h1(x), h2(x), . . . , hm−1(x)〉 is equally likely to be any permutation of the
smaller set {0,1, 2, . . . , m− 1} \ {h0(x)}.

Uniformity implies that the probability that T[h0(x)] is occupied is exactly n/m. Independence
implies that if T[h0(x)] is occupied, our search algorithm recursively searches the rest of the hash
table! Since the algorithm will never again probe T[h0(x)], for purposes of analysis, we might as

13

Algorithms Lecture 5: Hash Tables [Fa’22]

well pretend that slot in the table no longer exists. Thus, we get the following recurrence for the
expected number of probes, as a function of m and n:

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)].

The trivial base case is T (m, 0) = 1; if there’s nothing in the hash table, the first probe always
hits an empty slot. We can now easily prove by induction that E[T(m, n)] ≤ m/(m − n):

E[T (m, n)] = 1+
n
m

E[T (m− 1, n− 1)]

≤ 1+
n
m
·

m− 1
m− n

[induction hypothesis]

< 1+
n
m
·

m
m− n

[m− 1< m]

=
m

m− n
✓ [algebra]

Rewriting this in terms of the load factor α = n/m, we get E[T(m,n)] ≤ 1/(1− α). In other
words, the expected time for an unsuccessful search is O(1), unless the hash table is almost
completely full.

5.9 Linear and Binary Probing

In practice, however, we can’t generate ideal random probe sequences, so we must rely on a
simpler probing scheme to resolve collisions. Perhaps the simplest scheme is linear probing—use
a single hash function h(x) and define

hi(x) := (h(x) + i)mod m

This strategy has several advantages, in addition to its obvious simplicity. First, because the
probing strategy visits consecutive entries in the has table, linear probing exhibits better cache
performance than other strategies. Second, as long as the load factor is strictly less than 1,
the expected length of any probe sequence is provably constant; moreover, this performance is
guaranteed even for hash functions with limited independence. On the other hand, the number
or probes grows quickly as the load factor approaches 1, because the occupied cells in the hash
table tend to cluster together. On the gripping hand, this clustering is arguably an advantage of
linear probing, since any access to the hash table loads several nearby entries into the cache.

A simple variant of linear probing called binary probing is slightly easier to analyze. Assume
that m= 2ℓ for some integer ℓ (in a binary multiplicative hashing), and define

hi(x) := h(x)⊕ i

where ⊕ denotes bitwise exclusive-or. This variant of linear probing has slightly better cache
performance, because cache lines (and disk pages) usually cover address ranges of the form
[r2k .. (r + 1)2k − 1]; assuming the hash table is aligned in memory correctly, binary probing will
scan one entire cache line before loading the next one.

Several more complex probing strategies have been proposed in the literature. Two of
the most common are quadratic probing, where we use a single hash function h and set
hi(x) := (h(x) + i2)mod m, and double hashing, where we use two hash functions h and h′

and set hi(x) := (h(x) + i · h′(x))mod m. These methods have some theoretical advantages over
linear and binary probing, but they are not as efficient in practice, primarily due to cache effects.

14

Algorithms Lecture 5: Hash Tables [Fa’22]

5.10 Analysis of Binary Probing⋆

Lemma 8. In a hash table of size m= 2ℓ containing n≤ m/4 keys, built using binary probing,
the expected time for any search is O(1), assuming ideal random hashing.

ÆÆÆ Rewrite in terms of generic tail inequalities and time-independence tradeoffs; use 4th mo-
ment bound to get O(1) expected time.

Proof: The hash table is an array H[0 .. m−1]. For each integer k between 0 and ℓ, we partition
H into m/2k level-k blocks of length 2k; each level-k block has the form H[c2k .. (c + 1)2k − 1]
for some integer c. Each level-k block contains exactly two level-(k− 1) blocks; thus, the blocks
implicitly define a complete binary tree of depth ℓ.

Now suppose we want to search for a key x . For any integer k, let Bk(x) denote the range of
indices for the level-k block containing H[h(x)]:

Bk(x) =
�

2k⌊h(x)/2k⌋ .. 2k⌊h(x)/2k⌋+ 2k − 1
�

Similarly, let B′k(x) denote the sibling of Bk(x) in the block tree; that is, B′k(x) = Bk+1(x)\Bk(x).
We refer to each Bk(x) as an ancestor of x and each B′k(x) as an uncle of x . The proper ancestors
of any uncle of x are also proper ancestors of x .

x

B1(x)

B2(x)

B3(x)

B4(x)

B5(x) B5́(x)

B4́(x)

B3́(x)

B2́(x)

B1́(x)

B0́(x)
A conservative view of binary probing.

The binary probing algorithm can be recast conservatively as follows. First the algorithm
probes H[h(x)]; if that cell contains x or is empty, the algorithm halts. Then for each k from
0 to ℓ− 1, the algorithm probes every cell in the uncle block B′k(x), and then halts if that block
contained either x or an empty cell. The actual binary probing algorithm probes the cells in
B′k(x) in a particular order and stops immediately when it finds either x or an empty cell, but for
purposes of proving an upper bound, let’s assume that the algorithm probes the entire block in
some arbitrary order.

15

Algorithms Lecture 5: Hash Tables [Fa’22]

LooseBinaryProbe(x) :
if H[h(x)] = x

return True
if H[h(x)] is empty

return False
first← Dunno

for k← 0 to ℓ− 1
for each index j ∈ B′k(x) in arbitrary order

if first ̸= Dunno
if H[j] = x

first← True
if H[j] is empty

first← False

if first ̸= Dunno
return first

return Full

For purposes of analysis, suppose the target item x is not in the table; the time to search for an
item that is in the table can only be faster.) The expected running time of LooseBinaryProbe(x)
can be expressed as follows:

E[T (x)]≤
ℓ−1
∑

k=0

O(2k) · Pr[B′k(x) is full].

Assuming ideal random hashing, all blocks at the same level have equal probability of being full.
Let Fk denote the probability that B′k(x) (or any fixed level-k block) is full. Then we have

E[T (x)]≤
ℓ−1
∑

k=0

O(2k) · Fk.

Call a level-k block B popular if there are at least 2k items y in the table such that h(y) ∈ B.
Every popular block is full, but full blocks are not necessarily popular.

If block Bk(x) is full but not popular, then Bk(x) contains at least one item whose hash value
is not in Bk(x). Let y be the first such item inserted into the hash table. When y was inserted,
some uncle block B′j(x) = B j(y) with j ≥ k was already full. Let B′j(x) be the first uncle of Bk(x)
to become full. The only blocks that can overflow into B j(y) are its uncles, which are all either
ancestors or uncles of Bk(x). But when B j(y) became full, no other uncle of Bk(x) was full.
Moreover, Bk(x) was not yet full (because there was still room for y), so no ancestor of Bk(x)
was full. It follows that B′j(x) is popular.

We conclude that if a block is full, then either that block or one of its uncles is popular. Thus,
if we write Pk to denote the probability that B′k(x) (or any fixed level-k block) is popular, we have

Fk ≤ 2Pk +
∑

j>k

Pj .

We can crudely bound the probability Pk as follows. Each of the n items in the table hashes into
a fixed level-k block with probability 2k/m; thus,

Pk =
�

n
2k

�

�

2k

m

�2k

≤
n2k

(2k)!
2k2k

m2k <
� en

m

�2k

16

Algorithms Lecture 5: Hash Tables [Fa’22]

(The last inequality uses a crude form of Stirling’s approximation: n!> nn/en.) Our assumption
n ≤ m/4 implies the simpler inequality Pk < (e/4)2

k
. Because e < 4, it is easy to see that

Pk < 4−k for all sufficiently large k.
It follows that Fk = O(4−k), which implies that the expected search time is at most

∑

k≥0 O(2k)·
O(4−k) =
∑

k≥0 O(2−k) = O(1). □

In fact, we can prove the same expected time bound with a much weaker randomness
requirement.

Lemma 9. In a hash table of size m= 2ℓ containing n≤ m/4 keys, built using binary probing,
the expected time for any search is O(1), assuming 5-uniform hashing.

Proof: Most of the previous proof carries through without modification; the only change is that
we need a different argument to bound the probability that B′k(x) is popular.

For each element y ̸= x , we define an indicator variable Py := [h(y) ∈ B′k(x)]. The uniformity
of h implies that E[Py] = Pr[h(y) ∈ B′k(x)] = 2k/m, to simplify notation, let p = 2k/m. Now we
define a second indicator variable

Q y = Py − p =

¨

1− p if h(y) ∈ B′k(x)
−p otherwise

Linearity of expectation implies that E[Q y] = 0. Finally, define P =
∑

y ̸=x Py andQ =
∑

y ̸=x Q y =
P − E[P]; again, linearity of expectation gives us E[P] = p(n− 1) = 2k(n− 1)/m. We can bound
the probability that B′k(x) is popular in terms of these variables as follows:

Pr[B′k(x) is popular] = Pr[P ≥ 2k − 1] by definition of “popular”

= Pr[Q ≥ 2k − 1− 2k(n− 1)/m]

= Pr[Q ≥ 2k(1− n/m− 1/m)− 1]

≤ Pr[Q ≥ 2k(3/4− 1/m)− 1] because n≤ m/4

≤ Pr[Q ≥ 2k−1] because m≥ 4n≥ 4.

Now we do something that looks a little weird; instead of considering the variable Q directly,
we consider its fourth power. Because Q4 is non-negative, Markov’s inequality gives us

Pr[Q ≥ 2k−1] = Pr[Q4 ≥ 24(k−1)] ≤
E[Q4]
24(k−1)

Linearity of expectation implies

E[Q4] =
∑

y ̸=x

∑

z ̸=x

∑

y ′ ̸=x

∑

z′ ̸=x

E[Q yQzQ y ′Qz′].

Because h is 5-uniform, the random variables Q y are 4-independent. (We lose one level of
independence because Q y depends on both y and the fixed element x .) It follows that if y, z, y ′, z′

are all distinct, then E[Q yQzQ y ′Qz′] = E[Q y]E[Qz]E[Q y ′]E[Qz′] = 0. More generally, if any
one of y, z, y ′, z′ is different from the other three, then E[Q yQzQ y ′Qz′] = 0. The expectation
E[Q yQzQ y ′Qz′] is only non-zero when y = z = y ′ = z′, or when the values y, z, y ′, z′ consist of
two identical pairs.

E[Q4] =
∑

y

E[Q4
y] + 6
∑

y<z

E[Q2
y]E[Q

2
z]

17

Algorithms Lecture 5: Hash Tables [Fa’22]

The definition of expectation implies

E[Q2
y] = p(1− p)2 + (1− p)(−p)2 = p(1− p) < p

and similarly

E[Q4
y] = p(1− p)4 + (1− p)(−p)4 = p(1− p)((1− p)3 + p3) < p.

It follows that

E[Q4]< (n− 1)p+ 6
�

n− 1
2

�

p2

<
mp
4
+ 3
�mp

4

�2

< 2k−2 + 3 · 22(k−2) < 22(k−1)

Putting all the pieces together, we conclude that Pr[B′k(x) is popular]≤ 2−2(k−1). The rest of the
proof is unchanged. □

ÆÆÆ Describe Thorup and Zhang’s 5-uniform generalization of tabulation hashing. As in standard
tabulation hashing, break each item in our universe into two w/2-bit strings. Let A[0 .. 2w/2 − 1],
and B[0 .. 2w/2−1] and C[0 .. 2w/2+1−1] be arrays of independently uniform ℓ-bit strings; notice
that C is twice as big as A or B. Finally, define

hA,B,C(x , y) = A[x]⊕ B[y]⊕ C[x + y],

where⊕ denotes bitwise exclusive-or. The independence analysis is not too hard; basically we
need to argue that for any five distinct keys (x1, y1), . . . , (x5, y5), and for any subset of rows of
the array

x1 y1 x1 + y1
x2 y2 x2 + y2
x3 y3 x3 + y3
x4 y4 x4 + y4
x5 y5 x5 + y5

some value appears an odd number of times (in fact, exactly once) in some column.

Exercises

1. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items
is mapped to a different slot in the hash table. Of course, a perfect hash function is only
possible if m≥ n. (This is a different definition of “perfect” than the one considered in the
lecture notes.) After cursing your algorithms instructor for not teaching you about (this
kind of) perfect hashing, you decide to try something simple: repeatedly pick ideal random
hash functions until you find one that happens to be perfect.

(a) Suppose you pick an ideal random hash function h. What is the exact expected number
of collisions, as a function of n (the number of items) and m (the size of the table)?
Don’t worry about how to resolve collisions; just count them.

(b) What is the exact probability that a random hash function is perfect?

18

Algorithms Lecture 5: Hash Tables [Fa’22]

(c) What is the exact expected number of different random hash functions you have to
test before you find a perfect hash function?

(d) What is the exact probability that none of the first N random hash functions you try is
perfect?

(e) How many ideal random hash functions do you have to test to find a perfect hash
function with high probability?

2. (a) Describe a set of hash functions that is uniform but not (near-)universal.

(b) Describe a set of hash functions that is universal but not (near-)uniform.

(c) Describe a set of hash functions that is universal but not (near-)3-universal.

(d) A family of hash function is pairwise independent if knowing the hash value of any
one item gives us absolutely no information about the hash value of any other item;
more formally,

Pr
h∈H
[h(x) = i | h(y) = j] = Pr

h∈H
[h(x) = i]

or equivalently,

Pr
h∈H
[(h(x) = i)∧ (h(y) = j)] = Pr

h∈H
[h(x) = i] · Pr

h∈H
[h(y) = j]

for all distinct items x ̸= y and all (possibly equal) hash values i and j.
Describe a set of hash functions that is uniform but not pairwise independent.

(e) Describe a set of hash functions that is pairwise independent but not (near-)uniform.

(f) Describe a set of hash functions that is universal but not pairwise independent.

(g) Describe a set of hash functions that is pairwise independent but not (near-)universal.

(h) Describe a set of hash functions that is universal and pairwise independent but not
uniform, or prove no such set exists.

3. (a) Prove that the family MB of binary multiplicative hash functions described in Sec-
tion 5.5.3 is not uniform. [Hint: What is multba(0)?]

(b) Prove that the family MB is not pairwise independent. [Hint: Compare multba(0)
and multba(2w−1).]

(c) Consider the following variant of binary multiplicative hashing, which uses slightly
longer salt parameters. For any integers a, b ∈ [2w+ℓ] where a is odd, let

ha,b(x) :=
�

(a · x + b)mod 2w+ℓ
�

div 2w =

�

(a · x + b)mod 2w+ℓ

2w

�

,

and let MB+ = {ha,b | a, b ∈ [2w+ℓ] and a odd}. Prove that the set MB+ is strongly
near-universal:

Pr
h∈MB+

�

(h(x) = i)∧ (h(y) = j)
�

≤
2

m2

for all items x ̸= y and all (possibly equal) hash values i and j.

19

Algorithms Lecture 5: Hash Tables [Fa’22]

4. 〈〈Untested〉〉 Consider the following extension of Carter and Wegman’s universal family ofÂÂÂÂÂ

multiplicative hash functions. As before, we fix a prime number p, and for simplicity we
assume that m= p; we also fix an integer k ≥ 2. For any vector a = (a0, a1, . . . , ak−1) ∈ [p]k,
let ha : U→ [m] be the function

ha(x) =
k−1
∑

i=0

ai x
i mod p

Finally, let MPk be the set of all such functions: MPk = {ha(x) | a ∈ [p]k}. Prove that
MPk is k-uniform.

5. Tabulation hashing uses tables of random numbers to compute hash values. Suppose
|U|= 2w × 2w and m= 2ℓ, so the items being hashed are pairs of w-bit strings (or 2w-bit
strings broken in half) and hash values are ℓ-bit strings.

Let A[0 .. 2w − 1] and B[0 .. 2w − 1] be arrays of independent random ℓ-bit strings, and
define the hash function hA,B : U→ [m] by setting

hA,B(x , y) := A[x]⊕ B[y]

where ⊕ denotes bit-wise exclusive-or. Let TH denote the set of all possible functions hA,B.
Filling the arrays A and B with independent random bits is equivalent to choosing a hash
function hA,B ∈H uniformly at random.

(a) Prove that TH is 2-uniform.

(b) Prove that TH is 3-uniform. [Hint: Solve part (a) first.]

(c) Prove that TH is not 4-uniform.

(d) Tabulation hashing generalizes naturally to more than two tables as follows. Suppose
|U|= 2wk for some fixed integer k ≥ 2. Let A[1 .. k, 0 .. 2w − 1] be a two-dimensional
array of fully independent random ℓ-bit strings, and define

hA(x1, . . . , xk) =
k
⊕

i=1

A[i, x i]

Prove that the set THk of all such functions is 3-uniform but not 4-uniform, for all
k ≥ 2.

6. In this problem we consider yet another method for universal hashing. Suppose we are
hashing from the universe U = {0,1, . . . , 2w − 1} of w-bit strings to a hash table of size
m = 2ℓ; that is, we are hashing w-bit words into ℓ-bit labels. To define our universal
family of hash functions, we think of words and labels as boolean vectors of length w and ℓ,
respectively, and we specify our hash function by choosing a random boolean matrix.

For any ℓ×w matrix M of 0s and 1s, define the hash function hM : {0,1}w→ {0, 1}ℓ by
the boolean matrix-vector product

hM (x) = M x mod 2=
w
⊕

i=1

Mi x i =
⊕

i : x i=1

Mi .

20

Algorithms Lecture 5: Hash Tables [Fa’22]

where ⊕ denotes bitwise exclusive-or (that is, addition mod 2), Mi denotes the ith column
of M , and x i denotes the ith bit of x . Let M = {hm | M ∈ {0,1}w×ℓ} denote the set of all
such random-matrix hash functions.

For example, suppose w= 8 and ℓ= 4. Let M be the w× ℓ matrix

M =

0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1

Then we can compute hM (173) = 12 as follows:

0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1

1
0
1
0
1
1
0
1

=

0
1
1
1

⊕

0
1
0
1

⊕

1
0
0
1

⊕

1
0
1
0

⊕

1
1
0
1

=

1
1
0
0

(a) Prove that M is a universal family of hash functions.

(b) Prove that M is not uniform.

(c) Now consider a modification of the previous scheme, where we specify a hash function
by a random matrix M ∈ {0,1}ℓ×w and an independent random offset vector b ∈
{0,1}ℓ:

hM ,b(x) = (M x + b)mod 2 =

� w
⊕

i=1

Mi x i

�

⊕ b

Prove that the family M+ of all such functions is strongly universal (2-uniform).
(d) Prove that M+ is not 4-uniform.
⋆(e) Prove that M+ is actually 3-uniform.

7. Suppose we are using an open-addressed hash table of size m to store n items, where
n≤ m/2. Assume an ideal random hash function. For any i, let X i denote the number of
probes required for the ith insertion into the table, and let X =maxi X i denote the length
of the longest probe sequence.

(a) Prove that Pr[X i > k]≤ 1/2k for all i and k.

(b) Prove that Pr[X i > 2 lg n]≤ 1/n2 for all i.

(c) Prove that Pr[X > 2 lg n]≤ 1/n.

(d) Prove that E[X] = O(log n).

8. Multilevel hash tables are yet another mechanism for resolving collisions, different from
both open addressing and chaining. A multilevel hash table consists of a sequence of ℓ
arrays T1[0 .. m1 − 1], T2[0 .. m2 − 1], . . . , Tℓ[0 .. mℓ − 1] of (possibly) different sizes. Each

21

Algorithms Lecture 5: Hash Tables [Fa’22]

array Ti is associated with a separate hash function hi : U→ {0, 1, . . . , mi − 1}. Each entry
Ti[j] stores at most one item x such that hi(x) = j; collisions are resolved by recursively
promoting the colliding items to later arrays.

Algorithms for finding and inserting items are defined as follows. Search(x) returns
indices i and j such that Ti[j] = x . Similarly, Insert(x) inserts x into the first possible
array Ti and then returns returns indices i and j such that Ti[j] = x .

Search(x):
for i← 1 to ℓ

if Ti[hi(x)] = x
return (i, hi(x))

else if Ti[hi(x)] =∅
return Absent

return Full

Insert(x):
for i← 1 to ℓ

if Ti[hi(x)] =∅
Ti[hi(x)]← x
return (i, hi(x))

return Full

This exercise asks you to do a “back of the envelope” analysis of this structure. Suppose
we are trying to hash n items into a multilevel hash table with mi = 2n for all i. Assume
that the hash functions hi are fully independent ideal random functions.

(a) Prove that with high probability, more than n/2 items are stored in T1.

(b) Prove that with high probability, at most n/22i
items are not stored in the first i tables.

(c) Conclude that with high probability, it suffices to keep O(log log n) tables Ti .
⋆(d) Now suppose we set mi = 2n/2i , so that the total size of all tables is O(n). Prove that

with high probability, it still suffices to keep O(log log n) tables Ti .

© Copyright 2022 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

22

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Hash Tables
	Introduction
	The Importance of Being Random
	...But Not Too Random
	Chaining
	Multiplicative Hashing
	Prime multiplicative hashing
	Actually universal hashing
	Binary multiplicative hashing

	High Probability Bounds: Balls and Bins
	Perfect Hashing
	Open Addressing
	Linear and Binary Probing
	Analysis of Binary Probing

