
Algorithms Lecture 4: Tail Inequalities [Fa’22]

Popular tradition may be used to defend what seems irrational, and you can also say
that sometimes it is not irrational, for it is likely that unlikely things should happen.

— Aristotle, Poetics (c.335 BCE)

But, on the other hand, Uncle Abner said that the person that had took a bull by the
tail once had learnt sixty or seventy times as much as a person that hadn’t, and said
a person that started in to carry a cat home by the tail was gitting knowledge that
was always going to be useful to him, and warn’t ever going to grow dim or doubtful.

— Mark Twain, Tom Sawyer Abroad (1894)

4 Tail Inequalities⋆

The simple recursive structure of skip lists made it relatively easy to derive an upper bound
on the expected worst-case search time, by way of a stronger high-probability upper bound on
the worst-case search time. We can prove similar results for treaps, but because of the more
complex recursive structure, we need slightly more sophisticated probabilistic tools. These tools
are usually called tail inequalities; intuitively, they bound the probability that an integer random
variable takes a value far away from the mean, in the tails of the probability distribution.

4.1 Markov’s Inequality

Perhaps the simplest tail inequality was named after the Russian mathematician Andrey Markov;
however, in strict accordance with Stigler’s Law of Eponymy, it first appeared in the works of
Markov’s probability teacher, Pafnuty Chebyshev.1

Markov’s Inequality. Let Z be a non-negative integer random variable. For any real number
z > 0, we have Pr[Z ≥ z]≤ E[Z]/z.

Proof: First, the definition of expectation implies

Pr[Z ≥ 1] =
∑

z≥1

Pr[Z = z] ≤
∑

z≥0

z · Pr[Z = z] = E[Z].

For any real z > 0, applying this argument to the integer random variable ⌊Z/z⌋ gives us

Pr[Z ≥ z] = Pr
��

Z
z

�

≥ 1
�

≤ E
��

Z
z

��

≤ E
�

Z
z

�

=
E[Z]

z
. □

If that proof was a little opaque, the following visualization may be be helpful. The figure
on the next page shows the graph of Pr[Z ≥ z] as a function of z. Because Z takes only integer
values, this graph consists entirely of horizontal and vertical line segments. By splitting the region
between this curve and the coordinate axes into horizontal rectangles, we see that the area of this
region is exactly

∑

z Pr[Z ≥ z] =
∑

z z · Pr[Z = z] = E[Z]. On the other hand, for any particular
value of z, the rectangle with width z and height Pr[Z ≥ z] (shaded darker in the figure) fits
entirely under the curve. We conclude that z · Pr[Z ≥ z]≤ E[Z].

1The closely related tail bound traditionally called Chebyshev’s inequality was actually discovered by the French
statistician Irénée-Jules Bienaymé, a friend and colleague of Chebyshev’s. Just to be extra confusing, some sources
refer to what we’re calling Markov’s inequality as “Chebyshev’s inequality” or “Bienaymé’s inequality”.
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z

Pr[Z � z] area = E[Z]

Proof of Markov’s inequality.

Markov’s inequality implies the following bound on the probability that any random variable X
is significantly larger than its expectation:

Pr[X ≥ (1+δ)E[X ]]≤ 1
1+δ

.

Markov’s inequality makes absolutely no assumptions about the underlying probability distribu-
tion; it holds for arbitrary integer random variables. Unfortunately, the bounds that Markov’s
inequality (directly) implies are generally too weak to be useful. (For example, Markov’s inequal-
ity implies that with high probability, every node in an n-node treap has depth O(n2 log n). Well,
duh!) To get stronger bounds, we need to assume (and exploit) some additional structure in our
random variables.

4.2 Independence

Two random variables are independent if knowing the value of one variable gives us no additional
knowledge about the distribution of the other. More formally, X and Y are independent if and
only if

Pr[X = x ∧ Y = y] = Pr[X = x] · Pr[Y = y],

or equivalently, if and only if

Pr[X = x | Y = y] = Pr[X = x]

for all possible values x and y. For example, two flips of the same (ideal) fair coin are inde-
pendent, but the number of heads and the number of tails in a sequence of n coin flips are
not independent (because they must add to n). Variables that are not independent are called
dependent. Independence has two important consequences.

• The expectation of the product of two independent random variables is equal to the product
of their expectations E[X · Y ] = E[X ] · E[Y ].

• If X and Y are independent, then for any function f , the random variables f (X ) and f (Y )
are also independent.

Neither of these properties hold for dependent random variables.
More generally, a collection of random variables X1, X2, . . . , Xn are said to be mutually

independent (or fully independent) if and only if

Pr

� n
∧

i=1

(X i = x i)

�

=
n
∏

i=1

Pr[X i = x i]
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or equivalently, if and only if

Pr

�

Xn = xn

�

�

�

�

n−1
∧

i=1

(X i = x i)

�

= Pr[Xn = xn]

for all possible values x1, x2, . . . , xn. Mutual independence of a set of random variables implies
that the expectation of their product is equal to the product of their expectations:

E

� n
∏

i=1

X i

�

=
n
∏

i=1

E[X i].

Finally, if X1, X2, . . . , Xn are mutually independent, then for any function f , the random variables
f (X1), f (X2), . . . , f (Xn) are also mutually independent.

In some contexts, especially in the analysis of hashing, we can only realistically assume a
limited form of independence. A set of random variables is pairwise independent if every pair of
variables in the set is independent. More generally, for any positive integer k, we say that a set of
random variables is k-wise independent if every subset of size k is mutually independent. A set
of variables is fully independent if and only if it is k-wise independent for all k.

Every k-wise independent set of random variables is also j-wise independent for all j < k,
but the converse is not true. For example, let X , Y , and Z be independent random bits, and let
W = (X + Y + Z)mod 2. The set of random variables {W, X , Y, Z} is 3-wise independent but not
4-wise (or fully) independent.

4.3 Chebyshev’s Inequality

Most of our analysis of randomized algorithms and data structures boils down to analyzing sums
of indicator variables.2 So far we have only been interested in the expected value of these sums,
but we can prove stronger conditions under various assumptions about independence.

Consider a collection X1, X2, . . . , Xn of random bits, and for each index i, let pi = E[X i] =
Pr[X i = 1]. Let X denote the sum

∑

i X i and let µ= E[X ]; linearity of expectation immediately
implies that µ=

∑

i pi .

Chebyshev’s Inequality. If the indicator variables X1, X2, . . . , Xn are pairwise independent, then
Pr[(X −µ)2 ≥ z]< µ/z for all z > 0.

Proof: For each index i, let Yi := X i − pi , and let Y :=
∑

i Yi = X −µ.

E[Y 2] = E
�

∑

i, j

YiYj

�

[definition of Y ]

=
∑

i, j

E[YiYj] [linearity]

=
∑

i

E[Y 2
i ] +
∑

i ̸= j

E[YiYj]

=
∑

i

E[Y 2
i ] +
∑

i ̸= j

E[Yi] · E[Yj] [pairwise independence]

2The focus on sums of indicator variables is a feature (or if you prefer, a handicap) of these lecture notes, not of
randomized algorithm analysis more broadly!
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=
∑

i

E[Y 2
i ] + 0 [E[Yi] = 0, by linearity]

=
∑

i

�

(pi(1− pi)
2 + (1− pi)(0− pi)

2
�

[definition of E]

=
∑

i

pi(1− pi) <
∑

i

pi = µ

Because the random variable Y 2 is non-negative, Markov’s inequality now directly implies the
bound Pr[Y 2 ≥ z]≤ E[Y 2]/z < µ/z, which completes the proof. □

The quantity E[Y 2] = E[(X −µ)2] is commonly known as the variance of X .
Chebyshev’s inequality immediately gives us significantly tighter bounds than Markov’s

inequality when the component indicator variables X i are pairwise independent. The following
bounds hold for all positive real numbers ∆ and δ:

Pr[X ≥ µ+∆]< µ

∆2
Pr[X ≥ (1+δ)µ]< 1

δ2µ

Pr[X ≤ µ−∆]< µ

∆2
Pr[X ≤ (1−δ)µ]< 1

δ2µ

The inequalities on the left are called additive tail bounds; the inequalities on the right are called
multiplicative tail bounds. The inequalities in the top row bounds the upper tail of X ’s probability
distribution; the inequalities in the bottom row bound the lower tail.

An important consequence of Chebyshev’s inequality is the so-called Law of Large Numbers,
which states that if we repeat the same experiment many times, the statistical average of the
outcomes tends toward the expected value of a single experiment with overwhelming probability.
More formally, let X1, X2, X3, . . . be independent random bits, with Pr[X i = 1] = p for all i, and
for any index n, let X n =

∑n
i=1 X i/n denote the mean of the first n bits. The weak law of large

numbers states that
lim

n→∞Pr
�|X n − p|> ϵ�= 0

for any real ϵ > 0; this law follows almost immediately from Chebyshev’s inequality. The strong
law of large numbers states that

Pr
h

lim
n→∞X n = p
i

= 1;

the proof of this law is considerably more involved.

4.4 Higher Moment Inequalities

Chebyshev’s inequality and its corollaries are special cases of a more general family of so-called
moment inequalities, which consider the distribution of higher even powers of the random
variable X under stronger assumptions about the independence of the underlying indicator
variables X i . The kth central moment of X is the quantity E[(X −µ)k]. Here I’ll state a general
result without proof; for each k, the derivation follows the same general outline as the proof of
Chebyshev’s inequality above, but with more, you know, math.

kth Moment Inequality. For any fixed integer k > 0, if the variables X1, X2, . . . , Xn are 2k-wise
independent, then Pr[(X −µ)2k ≥ z] = O(µk/z) for all z > 0. The hidden constant in the O(·)
notation depends on k.
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These inequalities immediately imply the following asymptotic tail bounds for all positive real
numbers ∆ and δ; again, the hidden O(·) constants depend on the fixed parameter k.

Pr[X ≥ µ+∆] = O
�

� µ

∆2

�k�

Pr[X ≥ (1+δ)µ] = O

�

�

1
δ2µ

�k�

Pr[X ≤ µ−∆] = O
�

� µ

∆2

�k�

Pr[X ≥ (1−δ)µ] = O

�

�

1
δ2µ

�k�

In short, more independence in the indicator variables X i implies thinner tails in the distribution
of X , and therefore higher concentration of the distribution of X near its mean.

4.5 Chernoff Bounds

For fully independent random variables, even tighter tail bounds were developed in the early
1950s by Herman Chernoff, who was then a mathematics professor at the University of Illinois.
However, in strict accordance with Stigler’s Law, the first published version of “Chernoff bounds”,
which appeared in a 1952 paper by Chernoff that gave the bounds their name, were actually due
to his colleague Herman Rubin.3

Exponential Moment Inequality. If the indicator variables X1, X2, . . . , Xn are fully independent,
then E[αX ]≤ e(α−1)µ for any α≥ 1.

Proof: The definition of expectation immediately implies that

E[αX i ] = piα
1 + (1− pi)α

0 = (α− 1)pi + 1.

Thus, by The World’s Most Useful Inequality 1+ t ≤ et , we have

E[αX i ] ≤ e(α−1)pi .

Full independence of the X i ’s now immediately implies

E[αX ] =
∏

i

E[αX i ] ≤
∏

i

e(α−1)pi = e(α−1)µ

and we’re done. □

Chernoff Bound (upper tail). If the indicator variables X1, X2, . . . , Xn are fully independent,
then Pr[X ≥ x]≤ ex−µ(µ/x)x for all x ≥ µ.
Proof: Consider any fixed value x ≥ µ. The function t 7→ (x/µ)t is monotonically increasing, so

Pr[X ≥ x] = Pr

�

�

x
µ

�X

≥
�

x
µ

�x�

.

Markov’s inequality implies that

Pr

�

�

x
µ

�X

≥
�

x
µ

�x�

≤ E[(x/µ)X ]
(x/µ)x

.

3“Since that seemed to be a minor lemma in the ensuing paper I published (Chernoff, 1952), I neglected to give
[Rubin] credit. I now consider it a serious error in judgment, especially because his result is stronger, for the upper
bound, than the asymptotic result I had derived.”
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Finally, applying the exponential moment inequality at α= x/µ gives us

E[(x/µ)X ]≤ e((x/µ)−1)µ = ex−µ,

which completes the proof. □

A nearly identical argument implies a similar bound on the lower tail:

Chernoff Bound (lower tail). If the indicator variables X1, X2, . . . , Xn are fully independent,
then Pr[X ≤ x]≤ ex−µ(µ/x)x for all x ≤ µ.

Proof: For any x ≤ µ, we immediately have Pr[X ≤ x] = Pr[(x/µ)X ≥ (x/µ)x]. (The direction
of the inequality changes because x/µ≤ 1.) The remainder of the proof is unchanged. □

The particular value x/µ in these results may seem arbitrary, but in fact it’s chosen vary
carefully. The same arguments imply that

Pr[X ≥ x]≤ e(α−1)µ

αx
for all α > 1 and Pr[X ≤ x]≤ e(α−1)µ

αx
for all α < 1.

A bit of calculus implies that the right sides of these inequalities are minimized when α= x/µ.
Direct substitution now implies the following more traditional forms of Chernoff bounds, for

any positive reals ∆ and δ. Unlike the polynomial moment bounds we derived earlier, Chernoff
bounds for the upper and lower tails of X are asymmetric.

Pr[X ≥ µ+∆]≤ e∆
�

µ

µ+∆

�µ+∆
Pr[X ≥ (1+δ)µ]≤

�

eδ

(1+δ)1+δ

�µ

Pr[X ≤ µ−∆]≤ e−∆
�

µ

µ−∆
�µ−∆

Pr[X ≤ (1−δ)µ]≤
�

e−δ

(1−δ)1−δ
�µ

It is sometimes more convenient to work with the following looser forms of the multiplicative
Chernoff bounds, which hold for any 0< δ < 1. Here we use the notation exp(t) := et .

Pr[X ≥ (1+δ)µ]≤ exp
�−δ2µ/3
�

Pr[X ≤ (1−δ)µ]≤ exp
�−δ2µ/2
�

These looser bounds can be derived from the more precise forms above using the Taylor-series
approximations 1/ ln(1+δ)≤ 1/2+1/δ and ln(1−δ)≥ −δ+δ2/2. I’ll omit the straightforward
but grungy details. (You’re welcome.)

4.6 Coin Flips

To give an elementary example of applying these tail inequalities, consider an experiment where
we independently flip N perfectly fair coins, and we want to bound the probability of getting at
least αN heads, for some constant 1/2< α < 1.

For each index i, let X i = 1 if the ith flip comes up heads and X i = 0 otherwise, so that
X =
∑N

i=1 X i is the number of heads. Because the coins are fair, Pr[X i = 1] = 1/2 for all i.
Linearity of expectation immediately implies µ= E[X ] = N/2.

6
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• Markov’s inequality implies the nearly trivial bound Pr[X ≥ αN]≤ 1/2α. In particular, we
have Pr[X ≥ 3N/4]≤ 2/3 and Pr[X ≥ 9N/10]≤ 5/9.

• Chebyshev’s inequality implies Pr[X ≥ αN]≤ 1/((2α− 1)N) = O(1/(αN)). In particular,
we have Pr[X ≥ 3N/4]≤ 2/N and Pr[X ≥ 9N/10]≤ 5/(4N).

• Higher moment inequalities implies smaller inverse-polynomial upper bounds. For example,
the fourth-moment inequality implies Pr[X ≥ αN]≤ O(1/(αN)2).

• The simple version of Chernoff’s inequality implies the inverse-exponential upper bound

Pr[X ≥ αN]≤ exp

�

−(2α− 1)2

6
· N
�

.

In particular, we have Pr[X ≥ 3N/4]< e−N/24 and Pr[X ≥ 9N/10]< e−8N/75 < e−N/10.

• Symmetrically, Chernoff’s inequality for the lower tail symmetrically bounds the probability
of getting few heads as follows:

Pr[X ≤ αN]≤ exp

�

−(1− 2α)2

4
N

�

.

In particular, we have Pr[X ≤ N/4]< e−N/16 and Pr[X ≤ N/10]< e−4N/25 ≤ e−N/7.

• A more specialized argument involving binomial coefficients, which relies on all coins being
fair, implies

Pr[X ≤ αN]≤ �2αα(1−α)1−α�−N and Pr[X ≥ αN]≤ �2αα(1−α)1−α�−N
.

In particular, we have

Pr[X ≤ N/4] ≤
�

2
�

1
4

�1/4�3
4

�3/4
�−N

≈ e−0.13081N < e−N/8

and

Pr[X ≤ N/10] ≤
�

2
�

1
10

�1/10� 9
10

�9/10
�−N

≈ e−0.36806N < e−N/3.

4.7 Back to Treaps, Take 1

Consider an arbitrary node k in an n-node treap. We can argue informally that depth(k) = O(log n)
with high probability by following the “good/bad pivot” analysis of randomized quicksort as
follows.

For each integer 0 ≤ i ≤ depth(k), let vi denote the ancestor of node k at depth i in the
treap, and let ni denote the number of nodes in the subtree rooted at vi . (Thinking in terms of
randomized quicksort, ni is the size of the subproblem containing k after i levels of recursion.)
For any integer i > 0, we label level i good or bad as follows:

• If i < depth(k), then level i is good if ni−1/4≤ ni ≤ 3ni−1/4 and bad otherwise.

• If i ≥ depth(k), then level i is good or bad according to an independent fair coin flip.

7
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Each level i ≥ 1 is good with probability at least 1/2, and the events [i is good] are mutually
independent. There are at most log4/3 n good levels smaller than depth(k), since otherwise
ndepth(k) would be less than 1.

Thus, the depth of node k is at most the number of fair coin flips required to get log4/3 n
heads. Equivalently, for any constant c, the probability that depth(k)≥ c log4/3 n is at most the
probability that we see at most log4/3 n heads in a sequence of c log4/3 n independent fair coin
flips. Our earlier analysis of coin flips via Chernoff bounds, with N = c log4/3 n and α = 1/c,
implies

Pr
�

depth(k)≥ c log4/3 n
�≤ exp

�

−(1− 2/c)2

4
c log4/3 n

�

= n−(c−2)2/(4c ln(4/3)).

For any c > 2, we obtain an inverse-polynomial upper bound, which we can make arbitrarily
small by increasing the constant c. For example, setting c = 20 ln(4/3) ≈ 5.75364 gives us
Pr[depth(k)> 20 ln n]< 1/n2. We conclude that depth(k) = O(log n) with high probability.

Our more specialized argument implies that

Pr
�

depth(k)≥ 10 log4/3 n
�

< e−10 log4/3 n/3 = n−10/(3 ln(4/3)) <
1

n11
.

4.8 Back to Treaps: Take 2

In our analysis of randomized treaps, we wrote i ↑ k to indicate that the node with the ith
smallest key (‘node i’) was a proper ancestor of the node with the kth smallest key (‘node k’).
We argued that

Pr[i ↑ k] =
[i ̸= k]
|k− i|+ 1

,

and from this we concluded that the expected depth of node k is

E[depth(k)] =
n
∑

i=1

Pr[i ↑ k] = Hk +Hn−k − 2< 2 ln n.

To prove a worst-case expected bound on the depth of the tree, we need to argue that themaximum
depth of any node is small. Chernoff bounds make this argument easy, once we establish that the
relevant indicator variables are mutually independent.

Lemma 1. For any index k, the k− 1 random variables [i ↑ k] with i < k are mutually indepen-
dent, and the n− k random variables [i ↑ k] with i > k are mutually independent.

Proof: Fix an arbitrary index k. We explicitly consider only the indicators [i ↑ k] with i > k; the
proof for i < k is nearly identical.

To simplify notation, let X i denote the indicator variable [i ↑ k]. We will prove by induction
on n that the n− k indicator variables Xk+1, Xk+2, . . . , Xn are mutually independent, starting with
the vacuous base case n= k. Fix n−k arbitrary indicator values xk+1, xk+2, . . . , xn. The definition
of conditional probability immediately implies that

Pr

�

n
∧

i=k+1

(X i = x i)

�

= Pr

�

n−1
∧

i=k+1

(X i = x i) ∧ Xn = xn

�

= Pr

�

n−1
∧

i=k+1

(X i = x i)

�

�

�

�

Xn = xn

�

· Pr
�

Xn = xn

�
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Now recall that Xn = [n ↑ k] = 1 if and only if node n has the smallest priority of all nodes
between k and n. The other n− k − 1 indicator variables X i depend only on the order of the
priorities of nodes k through n − 1. There are exactly (n − k − 1)! permutations of the n − k
priorities in which the nth priority is smallest, and each of these permutations is equally likely.
Thus,

Pr

�

n−1
∧

i=k+1

(X i = x i)

�

�

�

�

Xn = xn

�

= Pr

�

n−1
∧

i=k+1

(X i = x i)

�

The inductive hypothesis implies that the variables Xk+1, . . . , Xn−1 are mutually independent, so

Pr

�

n−1
∧

i=k+1

(X i = x i)

�

=
n−1
∏

i=k+1

Pr [X i = x i] .

We conclude that

Pr

�

n
∧

i=k+1

(X i = x i)

�

= Pr
�

Xn = xn

� ·
n−1
∏

i=k+1

Pr [Xk = xk] =
n
∏

i=k+1

Pr [X i = x i] ,

or in other words, that the variables X i = [i ↑ k] are indeed mutually independent. □

Now let me define two new sequences of random variables:

• Y2, Y3, . . . are fully independent indicator variables, where Pr[Yj = 1] = 1/ j for each j.

• Z2, Z3, . . . are prefix sums of the previous sequence: Zk :=
∑k

j=2 Yj .

Lemma 2. For all integers 2≤ k ≤ n, we have Pr[Zk > 4 ln n]< 1/n2.

Proof: For every integer k ≥ 2 and real number z, we have Pr[Zk > z]< Pr[Zk+1 > z]. Thus, it
suffices to consider the special case k = n.

Let µ= E[Zn] = Hn−1< ln n and δ = 3. Since Zn is a sum of independent indicator variables,
Chernoff’s inequality implies

Pr[Zn > 4 ln n]< Pr[Zn > 4µ]

= Pr[Zn ≥ (1+δ)µ]

≤
�

eδ

(1+δ)1+δ

�µ

=

�

e3

44

�µ

<

�

e3

44

�ln n

= n3−4 ln 4 ≈ n−2.54518 <
1
n2

. □

Theorem 3. An n-node treap has depth O(log n) with high probability.

Proof: Specifically, I will bound the probability that the depth is at most 8 ln n. The union bound
Pr[A∨ B]≤ Pr[A] + Pr[B] implies

Pr
h

max
k

depth(k)> 8 ln n
i

= Pr

�

n
∨

k=1

(depth(k)> 8 ln n)

�

≤
n
∑

k=1

Pr[depth(k)> 8 ln n].
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The depth of any node k is a sum of n indicator variables [i ↑ k], as i ranges from 1 to n.
Lemma 1 partitions these variables into two mutually independent subsets. Define

depth<(k) :=
k−1
∑

i=1

[i ↑ k] and depth>(k) :=
n
∑

i=k+1

[i ↑ k],

so that depth(k) = depth<(k) + depth>(k). The union bound implies

Pr[depth(k)> 8 ln n] ≤ Pr[depth<(k)> 4 ln n] + Pr[depth>(k)> 4 ln n].

For all indices i ̸= k, the indicator variable [i ↑ k] has the same distribution as the variable
Y|i−k|+1 defined just before Lemma 2. It follows that depth<(k) has the same distribution as the
random variable Zk. Thus, for each k we have

Pr[depth<(k)> 4 ln n] = Pr

�k−1
∑

i=1

Yk−i+1 > 4 ln n

�

= Pr

� k
∑

j=2

Yj > 4 ln n

�

≤ Pr [Zk > 4 ln n]

< Pr [Zn > 4 ln n] < 1/n2.

Symmetrically, we have Pr[depth>(k) > 4 ln n] ≤ Pr [Zn−k−1 > 4 ln n] ≤ Pr [Zn > 4 ln n] < 1/n2.
We conclude that

Pr
h

max
k

depth(k)> 8 ln n
i

≤ 2n Pr[Zn > 4 ln n] < 2/n,

which completes the proof. □

By varying the constants in the previous argument, we can prove that for any constant c, the
depth of the treap is greater than c ln n with probability at most 2/nc ln c−c+1.

We can now finally conclude that any search, insertion, deletion, or merge operation on an
n-node treap requires O(log n) time with high probability. In particular, the expected worst-case
time for each of these operations is O(log n).

Exercises

1. (a) Prove that for any index k such that 1 < k < n, the n− 1 indicator variables [i ↑ k]
with i ̸= k are not mutually independent. [Hint: Consider the case n= 3 and k = 2.]

(b) Prove that for any index k, the k − 1 random variables [k ↑ i] with i < k are not
mutually independent. [Hint: Consider the case k = 4.]

2. (a) Consider an arbitrary node k in an n-node treap. Prove that the expected number
of descendants of node k is precisely equal to the expected number of ancestors of
node k.

(b) Why doesn’t the Chernoff-bound argument for depth imply that, with high probability,
every node in a treap has O(log n) descendants? The conclusion is clearly bogus—Every
treap has a node with n descendants!—but what’s the hole in the argument?
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3. The following algorithm finds the smallest element in an unsorted array:

RandomMin(A[1 .. n]):
min←∞
for i← 1 to n in random order

if A[i]<min
min←min1 (⋆)

return min

(a) Let X i be the indicator variable that equals 1 if line (⋆) is executed in the ith iteration
of the main loop. Prove that the variables X i are mutually independent.

(b) Prove that line (⋆) is executed O(log n) time with high probability.

4. Let S be a set of n points in the plane. A point p in S is called Pareto-optimal if no other point
in S is both above and to the right of p. Suppose each point in S is chosen independently
and uniformly at random from the unit square [0,1]× [0,1]. Prove that the number of
Pareto-optimal points in S is O(log n) with high probability.

5. Recall from the previous lecture note that a heater is a sort of anti-treap, in which the
priorities of the nodes are given, but their search keys are generated independently and
uniformly from the unit interval [0, 1]. Prove that an n-node heater has depth O(log n)
with high probability.

6. Let X1, X2, . . . , Xn be independent indicator variables, each equal to 1 with probability 1/2,
and let X =
∑

i X i . Clearly E[X ] = n/2.

(a) Let Y = (X − E[X ])2. What is E[Y ]?

(b) Let Z = (Y − E[Y ])2. What is E[Z]?

(c) Let Ω= (Z − E[Z])2. What is E[Ω]?
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