
CS 473 6 Fall 2024
2 Homework 4 1

Due Tuesday, October 8, 2024 at 9pm Central Time

Unless a problem specifically states otherwise, you may assume a function Random
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1, 2, . . . , k} in O(1) time. For example, to model a
fair coin flip, you could call Random(2).

0. [Warmup only. Do not submit solutions!]

After sending his loyal friends Rosencrantz and Guildenstern off to Norway, Hamlet
decides to amuse himself by repeatedly flipping a fair coin until the sequence of flips
satisfies some condition. For each of the following conditions, compute the exact expected
number of flips until that condition is met.

(a) Hamlet flips heads.
(b) Hamlet flips both heads and tails (in different flips, of course).
(c) Hamlet flips heads twice.
(d) Hamlet flips heads twice in a row.
(e) Hamlet flips heads followed immediately by tails.
(f) Hamlet flips more heads than tails.
(g) Hamlet flips the same number of heads and tails.
(h) Hamlet flips the same positive number of heads and tails.
(i) Hamlet flips more than twice as many heads as tails.

[Hint: Be careful! If you’re relying on intuition instead of a proof, you’re probably wrong.]

1. A majority tree is a complete ternary tree in which every leaf is labeled either 0 or 1.
The value of a leaf is its label; the value of any internal node is the majority of the values
of its three children. For example, if the tree has depth 2 and its leaves are labeled
1,0, 0,0, 1,0, 1,1, 1, the root has value 0.

0

0

0 10

1

0 11

0

0 01

A majority tree with depth 2.

It is easy to compute the value of the root of a majority tree with depth n in O(3n) time,
given the sequence of 3n leaf labels as input, using a simple postorder traversal of the tree.
Prove that this simple algorithm is optimal, and then describe a better algorithm. More
formally:

CS 473 Homework 4 (due October 8) Fall 2024

(a) Prove that any deterministic algorithm that computes the value of the root of a
majority tree must examine every leaf. [Hint: Consider the special case n = 1.
Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(cn) for some explicit constant c < 3. [Hint: Consider the
special case n= 1. Recurse.]

2. Let A and B be two arrays of integers of length n and m respectively. Assume that all
integers in the union of two arrays are distinct. Suppose also that for any indices i ∈ [n]
and j ∈ [m], we can compare whether A[i] > B[j] or A[i] < B[j] in O(1) time, but we
cannot directly compare two elements in A or two elements in B.

(a) Show that with the allowed comparisons, it is not possible to perfectly sort the union
of two arrays A∪B, unless the two arrays perfectly interleave, i.e. if we sort the union
A∪ B then every two elements of A is separated by at least one element of B and
vice-versa.

For example, arrays A= [2,5, 8,12] and B = [1, 3, 6, 10, 14] perfectly inter-
leave, because A∪ B = [1, 2,3, 5,6, 8,10, 12,14], but arrays A′ = [2,5, 8,12] and
B′ = [1, 3, 4, 6, 10, 14] do not perfectly interleave, because their union A′ ∪ B′ =
[1, 2,3,4, 5,6, 8,10, 12,14] contains two consecutive elements from A′.

(b) Give a randomized algorithm that only uses the allowed comparisons and sorts the
union of the two arrays A∪ B when they perfectly interleave. Analyze the expected
running time of your algorithm. [Hint: Recall the algorithm to sort nuts and bolts.]

3. An interval is a set of contiguous integers {a, a + 1, . . . , b} where a ≤ b. We use the
notation [a, b] to denote the corresponding interval.

Consider the following process for sampling a set of two distinct integers {i, j} that
both lie in the base interval [1, n]: first, we choose two non-overlapping sub-intervals
I ∪ J of [1, n]. Then, we sample integers i ∈ I and j ∈ J uniformly at random from each
sub-interval.

(a) Suppose we first deterministically choose two disjoint intervals I and J of [1, n], and
then choose elements i ∈ I and j ∈ J uniformly at random from each sub-interval.
Prove that the set {i, j} is is not uniformly distributed among all sets of two integers
in [1, n].

Since deterministic methods don’t work, let’s consider randomized ways of sampling the
two sub-intervals. We would like to make the sub-intervals as large as possible. The score
of two non-overlapping sub-intervals I ∪ J of [1, n] is given by

score(I ∪ J) =
n
|I |
+

n
|J |

.

A small score implies that both sub-intervals are large. For instance, if both sub-intervals
have size n/2, their score is 4, which is best possible up to constant factors. However, if
one or both sub-intervals have size O(1), their score is Θ(n).

2

CS 473 Homework 4 (due October 8) Fall 2024

To simplify our sampling problem, suppose n is a power of 2. Consider the following
randomized algorithm for choosing a pair of disjoint sub-intervals. The input to the
algorithm is a base interval [lo, hi] whose length hi − lo+ 1 is a power of 2, and another
integer 0≤ m≤ 2. The algorithm returns a set of m disjoint sub-intervals inside the base
interval [lo, hi]. The top-level call is SampleSubInterval(1, n, 2)

SampleSubInterval(lo, hi, m):
if m= 0

return {}
if m= 1

return
�

[lo, hi]
	

ℓ← hi − lo+ 1 〈〈length of base interval〉〉
mid← ⌊(lo+ hi)/2⌋ 〈〈end of left half〉〉
roll← Random(4ℓ− 4)
if roll≤ ℓ− 2

return SampleSubInterval(lo,mid, 2)
else if roll≤ 3ℓ− 2

I ← SampleSubInterval(lo,mid, 1)
J ← SampleSubInterval(mid+ 1, hi, 1)
return I ∪ J

else
return SampleSubInterval(mid+ 1, hi, 2)

In words, depending on the roll of an unbalanced three-sided die, the algorithm either
recursively samples the left half of the base interval, recursively samples the right half of
the base interval, or simply returns the left and right halves of the base interval.

(b) Prove that if we choose integers i ∈ I and j ∈ J uniformly at random from the
sub-intervals I ∪ J returned by SampleSubInterval(1, n, 2), the resulting set {i, j} is
uniformly distributed among all sets of two distinct integers in [1, n].

(c) Show that the expected score of the pair of sub-intervals returned by returned by
SampleSubInterval(1, n, 2) is O(log n), which is close to optimal.

∗(d) Extra Credit: Consider a similar process for sampling a set of k distinct integers in
[1, n]: first select non-overlapping intervals I1 ∪ I2 · · · ∪ Ik of [1, n] and then for each
ℓ ∈ [k] sample one point xℓ ∈ Iℓ uniformly. The score of such a tuple of k intervals is
defined as

score(I1 ∪ I2 · · · ∪ Ik) =
n
|I1|
+

n
|I2|
+ · · ·+

n
|Ik|

.

Give a randomized algorithm to sample k non-overlapping intervals of [1, n] such
that (i) sampling one point from each interval given by the algorithm results in a
uniformly distributed set of k distinct integers in [1, n], and (ii) the expected score of
the intervals is within a O(log n) factor of the optimal score.

[Hint: What is the best possible score with k intervals? Generalize the algorithm given
above to a set of size k. We recommend solving all the other homework problems, including
problem 0, before attempting this one.]

3

