
CS 473 = Fall 2024
9 Homework 0 :

Due Wednesday, September 4, 2024 at 9pm Central Time

• This homework tests your familiarity with prerequisite material: designing, describing,
and analyzing elementary algorithms; fundamental graph problems and algorithms; and
especially facility with recursion and induction. Notes on most of this prerequisite material
are available on the course web page.

• Each student must submit individual solutions for this homework. For all future
homeworks, groups of up to three students will be allowed to submit joint solutions.

• Every homework submission must include a list of sources and collaborators. Yes,
even if that list is empty.

• Submit your solutions electronically on Gradescope as PDF files.

– Submit a separate PDF file for each numbered problem.
– You can find a LATEX solution template on the course web site; please use it if you plan

to typeset your homework.
– If you plan to submit scanned handwritten solutions, please use dark ink (not pencil)

on blank white printer paper (not notebook or graph paper), and use a high-quality
scanner or scanning app to create a high-quality PDF for submission (not a raw
cell-phone photo). We reserve the right to reject submissions that are difficult to read.

T Some important course policies U

• You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

• Avoid the Deadly Sins! There are a few common writing (and thinking) practices that will
be automatically penalized on every homework or exam problem. We’re not just trying to
be scary control freaks; history strongly suggests that people who commit these sins are
more likely to make other serious mistakes as well. We’re trying to break bad habits that
seriously impede mastery of the course material.

– Always give complete solutions, not just examples.
– Write for humans, not compilers. In particular, don’t submit code.
– Every algorithm requires an English specification.
– Never use weak induction. Why tie n− 2 hands behind your back?!

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or online.

CS/ECE 374 A Homework 0 (due September 4) Fall 2023

1. Describe and analyze algorithms1 for the following problems. The input for each problem
is an unsorted array A[1 .. n] of n arbitrary numbers, which may be positive, negative, or
zero, and which are not necessarily distinct.

(a) Are there two distinct indices i < j such that A[i] + A[j] = 0?

(b) Are there three distinct indices i < j < k such that A[i] + A[j] + A[k] = 0?

For example, if the input array is [2,−1,0, 4,0,−1], both algorithms should return True,
but if the input array is [4,−1,2, 0], both algorithms should return False. You do not need
to prove that your algorithms are correct.

[Hint: This question is intended to test your ability to describe algorithms clearly and
precisely, without assuming that the reader knows your favorite programming language.
The devil is in the details!]

2. A tournament is a directed graph with exactly one directed edge between each pair of
vertices. That is, for any vertices v and w, a tournament contains either an edge v�w or
an edge w�v, but not both. A Hamiltonian path in a directed graph G is a directed path
that visits every vertex of G exactly once.

(a) [Practice only. Do not submit solutions.] Describe and analyze an efficient algorithm
that takes a tournament T as input and returns a Hamiltonian path in T as output.
[Hint: Why does such a path always exist?]

(b) Describe and analyze an efficient algorithm that takes a tournament T as input and
returns as output either (1) the only Hamiltonian path in T or (2) a directed cycle of
length 3 in T . Justify the correctness of your algorithm. [Hint: Why is one of these
two outputs always possible?]

To simplify both algorithms, assume that the input tournament T is represented as an
adjacency matrix.

z

y

x

w

v

u

z

y

x

w

v

u

z

y

x

w

v

u

A tournament with two Hamiltonian paths u�v�w�x�z�y and y�u�v�x�z�w
and a directed triangle w�x�z�w.

1Whenever we ask for an algorithm in this class, we want the fastest algorithm you can find (even if the problem
statement doesn’t explicitly say “fast” or “efficient”), and we have a target time bound in mind. Correct algorithms
that are slower than this target time will get partial credit; correct algorithms that are faster than this target time will
get extra credit. Completely incorrect algorithms are worth no credit, no matter how fast they are. We generally don’t
reveal the target time bound, because when we do, a lot more people submit fast algorithms that don’t work.

1

CS/ECE 374 A Homework 0 (due September 4) Fall 2023

3. An arithmetic expression tree is a binary tree where every leaf is labeled with a variable,
every internal node is labeled with an arithmetic operation, and every internal node has
exactly two children. For this problem, assume that the only allowed operations are +
and ×. Different leaves may or may not represent distinct variables.

Every arithmetic expression tree represents a function, transforming input values for
the leaf variables into an output value for the root, by following two simple rules: (1) The
value of any +-node is the sum of the values of its children. (2) The value of any ×-node is
the product of the values of its children.

Two arithmetic expression trees are equivalent if they represent the same function;
that is, the same input values for the leaf variables always leads to the same output value at
both roots. An arithmetic expression tree is in normal form if the parent of every +-node
(if any) is another +-node.

×
x +

y z

+

×
x z

×
y x

×
x+

yz

Three equivalent expression trees representing the function f (x , y, z) = x y + xz.
Only the third expression tree is in normal form.

Prove that for any arithmetic expression tree, there is an equivalent arithmetic expression
tree in normal form. [Hint: Think recursively. Be careful; this is more subtle than it
looks!]

2

