1. Suppose we initialize an array $A[1..n]$ by setting $A[i] = i$ for all *i*, and then randomly shuffle the array. After shuffling, each of the *n*! possible permutations of the array *A* is equally likely. An index *i* is called a *fixed point* of the shuffling permutation if $A[i] = i$.

Let *X* denote the number of fixed points of this random permutation.

- (a) What is the exact value of $E[X]$? [Hint: Express *X* as a sum of indicator variables.]
- (b) What is the exact value of $E[X^2]$? [Hint: What is the probability that two indices *i* and *j* are both fixed points?]

Prove that both of your answers are correct.

2. A *multilinear polynomial* is a sum of *terms*, where each term is a product of *distinct* variables and a non-zero real coefficient. The degree of a single term is the number of variables it contains. For example, the expression

$$
x_2 - 5x_1x_4 + 6x_2x_3 - 8x_1x_2x_3x_4
$$

is a multilinear polynomial with three terms, which have degrees 1, 2, 2, and 4.

Let *P* be a multilinear polynomial with *n* variables x_1, \ldots, x_n and *m* terms, where the degree of every term is exactly $n/10$. We call a set of variables $H \subseteq \{x_1, \ldots, x_n\}$ a *hitting set* for *P* if *H* contains at least one variable from each term of *P*.

Suppose we randomly generate *H* by independently including each variable x_i with probability $p = (c \log m)/n$, for some constant $c \ge 1000$.

- (a) *Prove* that for any fixed term in *P*, the set *H* contains at least one variable from that term with probability at least 1 − 1*/m*³ . [Hint: First compute the probability exactly, and then use the world's most useful inequality.]
- (b) *Prove* that *H* contains at most $c^2 \log m$ variables with probability at least $1 1/m^2$.
- (c) *Prove* that *H* is a hitting set of size $O(\log m)$ with probability at least $1 1/m$.

You may choose any constant value $c \geq 1000$ to make your calculations easier.

3. Suppose you have a set *X* of *n* items from some universe U that you want to store in a simple array $A[1..n]$, so that later you can look up elements of *X* in worst-case constant time.

Your manager really dislikes hash tables; randomized algorithms make them nervous. Instead, they suggest that you use five carefully engineered *access* functions h_1, h_2, h_3, h_4, h_5 , each of which takes an element of U as input and returns an integer between 1 and *n* as output, in constant time.

These access functions are *flawless* if it is possible store each element $x \in X$ at one of the five addresses $A[h_1(x)]$, $A[h_2(x)]$, $A[h_3(x)]$, $A[h_4(x)]$, or $A[h_5(x)]$, with no collisions—each array entry *A*[*i*] must store exactly one element of *X*.

Describe and analyze an algorithm to determine whether the given access functions are flawless. The input to your algorithm is the set *X* and the access functions h_1, h_2, h_3, h_4, h_5 .

Question 4 is on the other side of this page.

- 4. Recall that a *3CNF formula* is a boolean formula in conjunctive normal form with three literals per clause. Specifically:
	- A *literal* is either a variable x_i or its negation $\neg x_i$.
	- A *clause* is the disjunction (OR) of exactly three literals, using three distinct variables.
	- Finally, a 3CNF formula is the conjunction (AND) of one or more clauses.

For example, the following expression is a 3CNF formula with four variables and four clauses:

$$
(\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor x_3 \lor \neg x_4).
$$

This formula evaluates to TRUE under the assignment

$$
x_1 = \text{FALSE}, \ x_2 = \text{TRUE}, \ x_3 = \text{TRUE}, \ x_4 = \text{TRUE}.
$$

Suppose you are given a 3CNF formula with *n* variables x_1, \ldots, x_n and *m* clauses, where $m \geq 100$.

- (a) Suppose we independently assign each variable x_i to be TRUE or FALSE with equal probability. A clause is *satisfied* by this assignment if the clause evaluates to TRUE; otherwise, the clause is *unsatisfied*. What is the exact expected number of *unsatisfied* clauses under this assignment? [Hint: Express the number of unsatisfied clauses in terms of indicator variables.]
- (b) *Prove* that the probability that at least *m/*8+1 clauses are unsatisfied is at most 1−*C/m* for some constant *C*. [Hint: You may use that $\frac{1}{1+t} \geq \frac{1}{2t}$ $\frac{1}{2t}$ for all $t \geq 1$.]
- (c) Part (b) implies that under a random assignment, the number of satisfied clauses is at least 7*m/*8 with probability at least *C/m*. Using this fact, describe an *efficient* randomized algorithm that *always* finds an assignment that satisfies at least 7*m/*8 clauses, and analyze its expected running time.